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1. Introduction

Several physically important mechanical systems have a configuration space which
may be identified with a Lie group. Let us give some examples.

Example 1. Let us consider a massive point particle moving in the physical space F, of
dimension 3. The configuration space is the affine space E. Once a particular point O of
E has been chosen as origin (that point being looked at as a reference configuration of the
system) we can consider E as a vector space, therefore as a Lie group with the addition of
vectors as composition law.

More generally, let us consider a system of n massive point particles moving in the
physical 3-dimensional space E. The configuration space is now F X --- x E, product of
n copies of F, one for each particle. We allow two distinct particles to occupy the same
position in space at a given time (otherwise we should take as configuration space an open
subset of E X ---x E). As above, once a particular point O = (O1,...,0p) of Ex---x E'is
chosen, the configuration space of the system can be considered as a vector space, therefore
as a Lie group.

Example 2. Let us consider a massive rigid body moving in the Euclidean 3-dimensional
space E. We assume that the body has at least three distinct points not on the same
straight line. Let Sy be a particular position of the body in E, which will be considered
as a reference configuration of the system. Then for any other configuration, i.e., for any
other position S of the rigid body in E, there exists a unique element g of the group
E(FE) of Euclidean displacements of E which maps Sy onto S. Therefore, once a reference
configuration is chosen, the configuration space of the system can be identified with the
Lie group £(E).



Example 3. Let us particularize slightly Example 2, by assuming that our rigid body
has a point which remains fixed in space, and that it rotates around that point. We take
that point as origin. As above, once a reference configuration is chosen, the configuration
space of the system can be identified with the subgroup of elements g € £(F) such that
g(0) = 0, i.e, with the linear group SO(FE,0) (the space E, with 0 as origin, being now
considered as an Euclidean vector space).

Example 4. Consider an ideal, incompressible fluid which fills a vessel V' fixed in the
physical space E, and flows in that vessel. We assume that V is a compact, connected part
of F/, bounded by a smooth surface V. To describe the configuration space of the system,
we introduce the set of all fluid particles; it is an abstract set V, with a smooth three-
dimensional manifold structure with boundary, and a volume 3-form. A configuration of
the system is a diffeomorphism ¢ : V — V such that the pullback of the natural (that
means determined by the Euclidean structure) volume 3-form v of V' is equal to the 3-
form given of V. Let ¢p : ¥V — V be a reference configuration of the system. For any
other configuration ¢ : V — V, there exists a unique element g of the group Dif f(V,v)
of volume-preserving diffeomorphisms of V such that ¢ = g o y. Conversely, for any
g € Dif f(V,v), g o g is a configuration of the system. Therefore the configuration space
of the system can be identified with Dif f(V,v), which is an infinite-dimensional Lie group.

Example 5. As we shall see later, the well known Korteweg-de Vries equation on the cir-
cle S! can be considered as the Euler equation of a mechanical system whose configuration
space is an infinite-dimensional Lie group, the Virasoro-Bott group.

Among these systems, the most remarkable are those whose phase space is a non-
Abelian Lie group (examples 2 to 5). These systems share remarkable properties which
derive from the fact that a Lie group G acts on itself by two distinct actions: the left and
right translations. These two actions can be canonically lifted into two actions,

L:GXT*G—T*G and R:T*GxG —T*G

of the Lie group G on its cotangent bundle T*G. These two actions are Hamiltonian
with respect to the canonical symplectic structure of the cotangent bundle T*G, and have
Ad*-equivariant momentum maps Jr : T*G — G* and Jg : T*G — G*. Moreover, the
Hamiltonian H : T*G — R of the system is invariant, in some cases under the action L
in other cases under the other action R and still in other cases under the restriction of L
(or of R) to a subgroup of GG. As a consequence, the Hamiltonian vector field Xz on T*G
can be projected,

(i) by Jg into G* when H is L-invariant,

(ii) by Jr into G* when H is }/i—invariant,
(iii) by the momentum map of an action of a new Lie group G;, which is a semi- direct

product of G with an Abelian group, when H is invariant under the restriction of L

(or of R) to a suitable subgroup of G.

That projected vector field defines a differential equation (on G* in cases (i) and (ii),
and on Gf in case (iii)), called the Euler equation. That equation is Hamiltonian with
respect to the Lie-Poisson structure of G* (or of Gy).
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These remarkable properties were discovered by Euler [3] around 1765 for Examples
3 and 4 (the motion of a rigid body around a fixed point, and the motion of an ideal,
incompressible fluid). They were expressed with the modern concepts of Lie groups and
Lie algebras, and generalized, by V. Arnol’d [1] in 1966. The construction of the group G
and of its action on T*G, needed when the Hamiltonian H is invariant by the restriction
of L (or of R) to a subgroup of G only, appears in the works of Iacob and Sternberg
[56], Marsden, Ratiu and Weinstein [7], Guillemin and Sternberg [4]. The recent book by
Arnol’d and Khesin [2] fully develops applications of Lie groups to Hydrodynamics.

In Section 2 we discuss the actions L and R of a Lie group G on its cotangent bundle
T*@G, and we obtain the expressions and properties of their momentum maps Jy, and Jg.

In Section 3 we present a slight generalization, useful for mechanical systems involv-
ing a magnetic field. The phase space of such systems is the cotangent bundle to their
configuration manifold equipped with a symplectic form which differs from the canonical
symplectic form of a cotangent bundle: it is the sum of the canonical symplectic form and
of the pull-back of a closed 2-form on the configuration space.

In Section 4 we discuss the construction of the Lie group G and its action on TG,
when one of the two actions L or R is restricted to a subgroup of G.

Finally in Sections 5 to 7 we develop the examples briefly sketched above.

2. The right and left actions of a Lie group on its cotangent bundle

Let G be a Lie group. We will denote by G its Lie algebra, and by G* the dual of G For
any g € G, we denote by Ly : G — G the left translation Ly(h) = gh, and by R, : G = G
the right translation R,(h) = hg. We denote by TL, : TG — TG and TR, : TG — TG
the canonical lifts to the tangent bundle T'G' of L, and R, respectively. We define the
maps Eg : T*G — T*G and ﬁg : T*G — T*G, as the transpose of TL,—1 and TR,-1,
respectively: R R

Ly="TL,~1), Ry="TR,-1).
We recall that the Liouville 1-form « on the cotangent bundle 7" G is given by the formula,
where w € T(T*G),
(a(prc(w)),w) = (pr-¢(w), Tec(w)),

where pr«g : T(T*G) — T*G and qg : T*G — G are the canonical projections.

We denote by (2 = da the canonical symplectic form on T*G.

Theorem 1. The maps
L:GxT*G—T*G, L(g,¢)=Ly&, and R:T*G xG—T*G, R(yg) =R,

are two commuting Hamiltonian actions of the Lie group G on the symplectic manifold
(T*G, ), respectively on the left and on the right. They admit as Ad*-equivariant mo-
mentum maps, respectively, the maps Jr, : T*G — G* and Jg : T*G — G*,

Jo(€) = Raoep-1€5 () = Ligeen1€-
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Proof. The actions L and R of G on itself by left and right translations satisfy, for
all g and h € G,

LgOLhZLgh, RgORhZRhg, LgORhZRhOLg.

Therefore L is an action of the left and R an action on the right, and these two actions
commute. Since L and R are the canonical lifts to the cotangent bundle T*G of the actions
L and G, respectively, they satisfy, for all g and h € G,

Egoihzigh, Egoﬁh:.ﬁhg, igoﬁhZﬁhoig.

This means that L is an action on the left, R an action on the right, and that these two
actions commute.

For any g € G, L, is the canonical lift to the cotangent bundle T*G of the diffeomor-
phism L, : G — G, therefore, it satisfies

(Ly)*a=a, (L) Q=Q.

This shows that L is a symplectic action of G on (T*G, ). For the same reason, Ris a
symplectic action of G on (T*G, Q).
For every X € G, we denote by X%, , and XZ, ; the vector fields on T*G defined by

d

d
7

X’ZI“I*G(g) = Eexp(tX)g) |t:0’ X’JE*G(g) = a (Eexp(tX)g) |t:0 .

They are called the fundamental vector fields on T*G associated to the element X of the
Lie algebra G, for the actions L and R, respectively. In order to prove that the action
L is Hamiltonian and admits as a momentum map the map Jr : TG — G*, we must
check that for any X € G, the fundamental vector field X%*G is Hamiltonian and admits
as Hamiltonian the function X o Jy, (we consider here X as a linear form on the dual G*
of the Lie algebra G). In other words, we must check that

i(XE. ) = —d(X 0 Jy).
Since the action L leaves invariant the Liouville 1-form a, we have
LXE ) =i(XEg)da+ di(XF.g)a =0,

therefore, since 2 = da,
i(XE. )0 = —di(XE. ).

According to the definition of the Liouville 1-form «, we have, for any ¢ € T*G,
i(Xfeg)a(§) = (¢, Tea(Xfeq(£))) -
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But since L is the canonical lift to 7*G of the action of G on itself by left translations, we

have p
To(Xf.c(€) = 5

Therefore, since Jp,(§) = RqG(g) 1(£),

(€, Tqe(Xfec(©)) = (Reg(e)-1€, X) = X 0 JL(€).-

(Lexp(tX)QG (5)) |t:0: TRQG(E)X ’

So we obtain
i(Xh )= —d(X o Jp).

A similar calculation shows that
i(XE Q= —d(X o JR).

We have proved that the actions L and R are Hamiltonian and admit as momentum maps
the maps Jr, and Jg, respectively. R

Finally its very expression shows that J, is equivariant for the L-action of G on T*G
and the Ad*-action of G on G*. Similarly, Jg is equivariant for the R-action of G on T G
and the Ad*-action of G on G*. The action of G on T*G being tacitely assumed to be L
when we consider Jr and R when we consider J r, we will say, in short, that both Jr and
Jr are Ad*-equivariant. 0O

Remarks.  The momentum maps J;, and Jg are submersions. For any § € TG, we
observe that Jp(£) is the unique point where the orbit of ¢ under the action R meets
G*, considered as the cotangent space to G at the unit element. Similarly Jr(§) is the
unique point where the orbit of £ under the action L meets G*. Therefore the orbits of the
L-action are the level sets of .J r, and the orbits of the R-action are the level sets of J R-

Theorem 2.  Let n be the dimension of the Lie group G. For each point § € T*G, the

tangent spaces at £ to the L-orbit and to the R-orbit of that point are two n-dimensional
vector subspaces of T¢(T*G), symplectically orthogonal to each other. The momentum
map Jr, : T*G — G* is a Poisson map when G* is equipped with the Lie-Poisson bracket,
called the minus Lie-Poisson bracket, given by the formula (where f and g are two smooth
functions on G* and n a point in G*),

{f,9}—(n) = —(n,[df (n), dg(n)]) .

Similarly, the momentum map Jg : T*G — G* is a Poisson map when G* is equipped with
the Lie-Poisson bracket, called the plus Poisson bracket, opposite of the previous one,

{f, 9}+(n) = (. [df (n), dg(n)])-

Application to a G-invariant Hamiltonian system on 7*G.

Let H : T*G — R be a smooth function, and Xz the associated Hamiltonian vector
field on T*@, such that
i(Xg)Q=—dH .
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Let us assume that H is invariant under the action L of G on T*G. Of course, similar
results would hold, mutatis mutandis, if H were invariant under the action R. Since the
L-orbits are the level sets of J R, there exists a unique smooth function H:G* — R such
that R

H=HoJg.

Since Jg is a Poisson map (when G* is equipped with the plus Lie-Poisson bracket),
the Hamiltonian vector field Xy on T*G projects, under the map Jg, onto G*, and its
projection is the Hamiltonian vector field X 7 associated with the Hamiltonian H on the
Poisson manifold (G*, {, }+). The differential equation on G*,

W _ xa(et).

defined by the vector field X 7> 1s called the Euler equation.

Remark. Under the same assumption as above, Noether’s theorem shows that the
momentum map Jz, is constant on each integral curve of Xg. In order to make easier the
determination of these integral curves, one may use the well known Marsden-Weinstein
reduction procedure [8]. Let n be an element of G*. To determine the integral curves
of Xy on which the (constant) value taken by Ji, is 7, we first consider J; (), which
contains all these integral curves. Since Jr is a submersion, J; '(n) is a submanifold of
T*G. Let G, be the stabilizer of n (for the coadjoint action of G on G*). Since Jy, is Ad*-
equivariant, the restriction of the L-action to the subgroup G, leaves J; 1(n) invariant.

The quotient manifold J;'(n)/G,, that means the set of orbits of the L-action of Gy
on J; 1(17), has a reduced symplectic structure. Moreover, there exists a unique smooth

function H : J;*(n)/G, — R such that

where 7 : J ) — JL_l(n) /Gy is the canonical projection. That projection maps the
integral curves of Xy contained in J; 1(n) onto the integral curves of the Hamiltonian
vector field X, on the reduced symplectic manifold J; () /Gy

So we see that two different procedures can be used in order to make easier the
determination of the integral curves of Xp:

— the use of the Poisson map Jr : T*G — G, which maps these curves onto the
integral curves of the Euler equation on the Poisson manifold G*,

— the use of a level set J; '(n) of the momentum map J; and of the canonical
projection 7 : J;'(n) — Jg '(n)/Gy, which maps the integral curves of Xy contained
in J;'(n) onto the mtegral curves of the Hamiltonian vector field X, on the reduced

symplectic manifold J; *(n)/G,-

These two procedures are essentially equivalent: the connected components of the
reduced symplectic manifolds of Marsden and Weinstein are symplectomorphic to the
symplectic leaves of the Poisson manifold (G*, {, }+), which are exactly the connected
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components of the coadjoint orbits. However, the use of the Euler equation has the ad-
vantage of giving at once, by a single operation, the same result as that given by looking
at all the reduced symplectic manifolds for all the values of 7.

3. Taking into account a magnetic field

For mechanical systems made of material bodies moving in an electromagnetic field,
one has to replace the canonical symplectic form 2 of the cotangent bundle 7*G by another
symplectic form, sum of the canonical form 2 and of the pull-back of a closed 2-form on
the configuration space G (see, for example, the book by J.-M. Souriau [9]). This leads us
to the following generalization.

As in Section 2, G is a Lie group, G its Lie algebra and G* the dual space of G. Let
0 : G — G be a smooth map such that, for all g and h € G,

0(gh) = Ady 0(h) +6(g) , (*)

and such that its differential at the unit element, ©® = T.0, is skew-symmetric: for all X
and Y € G (identified with T.G),

<T€9(X)7 Y> = _<T€0(Y)’ X> :

We set
O(X,Y) = (T.0(X),Y).

We can consider © as a bilinear skew-symmetric 2-form on the Lie algebra G, or as a left
invariant differential 2-form on the Lie group G. As a consequence of (x), © is closed:

de =0.
We now consider the 2-form on T*G:
Qg =doa+ q&@ y

where « is the Liouville 1-form on T*G. That 2-form is closed and nondegenerate, i.e.,
symplectic. Since © is left invariant, {2y is invariant under the L action defined in Section
2: for every g € GG, we have R

Ly = Q.

However, 2y is not invariant under the other action, j%, defined in Section 2. We define a
new map R : T*G x G — T*G by setting, for all g € G, ¢ € T*G,

RO(€,9) = RO(€) = Ryt + Lyge)g0(97").

An easy calculation shows that R is an action of G on T*G on the right which commutes
with the action L. In other words it satisfies, for all g and h € G,

RSORQZRZQ, LgoRg:RZoLg.
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Moreover, the action RY leaves invariant the symplectic 2-form Qy: for all g € G,
(RS)*Q9 = Q4.
The following theorem generalizes Theorem 1 of Section 2.

Theorem 3. The maps
L:GxT*G—TG, L(g,¢) =Ly, and R?:T*GxG —T*G, R(¢g) =R,

are two commuting Hamiltonian actions of the Lie group G on the symplectic manifold
(T*G,Qyg), respectively on the left and on the right. They admit as momentum map,
respectively, the maps Jg :T*G — G* and Jg : T*G — G*,

J2(E) = Ryp o)1 +0(ac (), JTr(€) = Ly e)-1£ -

The momentum map Jg is equivariant with respect to the action L of G on T*G and the
affine action of G on G*:

(g,m) = Adyn+0(g),

while the momentum map Jg is equivariant with respect to the action RY of G on T*G
on the right and the affine action of G on G* on the right:

(n,9) — Ady-1n+0(g™1).

Remarks. Let us set, for all g € G, n € G*,
ag(g,m) = Adyn+0(g).

Then ay : G X G* — G* is the action of G on G* on the left for which Jg is equivariant.
The action of G on G* on the right for which Jg is equivariant is the same action ag, but
with g replaced by ¢g—!, in order to have an action on the right; in other words, it is the
action on the right

(n,9) = ag(g™,m).
In [6] the two actions of G on G* for which J¢ and Jg are equivariant were not so simply

related, because at that time we made different sign conventions, leading to the replacement
of J¢ by its opposite. The conventions made here now seem to us more natural.

As in Section 2, the orbits of L are the level sets of .J Rr, and the orbits of RY are
the level sets of J¢. As a consequence, we have the following theorem, which generalizes
Theorem 2 of Section 2.

Theorem 4.  Let n be the dimension of the Lie group G. For each point § € T*G, the
tangent spaces at & to the L-orbit and to the R%-orbit of that point are two n-dimensional
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vector subspaces of T¢(T*G), symplectically orthogonal to each other (with respect to the
symplectic form Qg(€)). The momentum map J? : T*G — G* is a Poisson map when T*G
is equipped with the symplectic 2-form €y and G* with the modified Lie-Poisson bracket
(callet the 0-modified minus Lie-Poisson bracket) given by the formula (where f and g are
two smooth functions on G* and n a point in G*),

{£,9Y%.(n) = —{(n,[df (n),dg(n)]) + ©(df (n), dg(n)).

Similarly, the momentum map Jg : T*G — G* is a Poisson map when T*G is equipped
with the symplectic 2-form $2y and G* with the modified Lie-Poisson bracket, opposite of
the previous one (called the 8-modified plus Lie-Poisson bracket),

{£,9Y%.(n) = (n,[df (n), dg(n)]) — ©(df (n),dg(n)) -

4. Reduction of one of the actions L or R to a subgroup

Several mechanical systems with a Lie group G as configuration space have a Hamil-
tonian H : T*G — G which is invariant under the restriction of the action L to a subgroup
of G, rather than under the full action L of G on T*G. For example, the motion of a
heavy rigid body with a fixed point (example 3 of Section 1) has the Lie group SO(FE,0) as
configuration space; when the body is submitted to the gravitational force, its Hamiltonian
is no more invariant under the full action L, but only under the restriction of that action
to the one-dimensional subgroup of SO(E,0) made by the rotations around the vertical
axis through the fixed point of the body.

A very remarkable property allows us to obtain, even in that case, an Euler equa-
tion (at least when the subgroup of G for which the restricted L-action leaves invariant
the Hamiltonian is the stabilizer of a point for a linear representation of G' in a finite
dimensional vector space). Let us describe more fully that property.

As in the preceding sections, G is a Lie group, G its Lie algebra and G* the dual space
of G. The cotangent bundle T*G will be equipped with its canonical symplectic 2-form
Q = da, as in Section 2. (Of course, it is possible to extend the results when T*G is
equipped with a modified symplectic 2-form €2y, as in Section 3.)

Let p : G — GL(E) be a linear representation of G in a finite-dimensional vector
space E. We denote by p* : G — GL(E*) the contragredient representation of G in the
dual space E* of E. We recall that for each x € E, ( € E* and g € GG, we have

(03¢, ) = ((, pg—17) -
Let n be a point in E*, and let
Gy={9€Glpgn=n}
be the stabilizer of 7; it is a closed subgroup of G.
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Let G1 = G x, E be the semi-direct product of G with E, for the linear representation
p- We recall that the product in G is given by the formula

(9,2)(h,y) = (gh, z + pgy),

where g and h € G, z and y € E.

With every x € E, we associate the function fJ on G

fg) = (n, pe(x)).

Of course, the function f]! depends not only on z € E, but also on n € E*; however, the
parameter n € E* will be considered as fixed.

We define an action ¢" of E on T*G by setting, for all z € E and £ € T*G,

PI(E) = €+ df? (qe(€)) -

Finally, by composition of 9" with ﬁ, we obtain an action ®p of G; = G x, E on
T*G, on the right, given by the formula

Dp (9.0)(E) = ¥ 0 Ry(€),

where (g,2) € G X, E and £ € T*G.

The main result of this section is the following theorem.

Theorem 5.  With the above assumptions and notations, the restriction to G, of the
action L and the action ® Rr are two commuting, Hamiltonian actions on the symplectic
manifold (T*G,?), respectively of the Lie group G, on the left, and of the Lie group
G1 = GX,FE on the right. Their momentum maps J; and J}} take their values, respectively,
in the dual g; of the Lie algebra of G, and in the dual G* x E* of the Lie algebra Gx E of G;.
For each point ¢£ € T*G, the tangent spaces at & to the L-orbit of Gy, and to the ® p-orbit of
GG1 are two vector subspaces of the symplectic vector space (T (T*G),Q(¢ )), symplectically
orthogonal to each other. When T*G is equipped with its canonical symplectic structure,
g;; with its minus Lie-Poisson bracket and G* x E* with its plus Lie-Poisson bracket, the
momentum maps J} : T*G — G, and Jp : T*G — G* x E* are Ad*-equivariant Poisson

maps. Moreover, the orbits of the action L of G, are the level sets of J},, and the orbits
of the action ®g of G are the level sets of J} .

Application to a G-invariant Hamiltonian system.

With the above assumptions and notations, let H : T*G — R be a smooth function,
and Xpg the associated Hamiltonian vector field on 7*G. Let us assume that H is invariant
under the restriction of the action L to the subgroup G,. Since H is constant on each

L-orbit of G, in T*G, and since these orbits are the level sets of the momentum map
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Jg :T*G — G = G* x E*, there exists a unique smooth function H: g* x E* — R such
that

H=HolJ}.
Since J}} is a Poisson map, the Hamiltonian vector field Xy on T*G projects by J}} on
G*x E*, and its projection is the Hamiltonian vector field X 7 associated to the Hamiltonian

H , for the plus Lie-Poisson structure of G* x E*. The corresponding differential equation
on G* x E* is the Euler equation.

5. The rigid body with a fixed point

The assumptions and notations being those of Example 3 of Section 1, the Hamiltonian
of the system is

H(E) = 5 (a(©). 17" 0 Jn(©) — (“(acE)F,a).

We have denoted by F the gravity force (considered as an element of the dual E* of FE),
and by a € F the vector @, where 0 is the fixed point and G the center of mass of the rigid
body in its reference configuration. The linear map I : G — G* is the inertia operator; it
is symmetric definite positive.

The rigid body with a fixed point without gravity effects.

The gravity force does not appear in the Hamiltonian either when F' = 0 (no gravity
force), or when a = 0G = 0 (the fixed point is the center of mass of the body). The
Hamiltonian H reduces to

H(E) = 5 (Ta(€), I o Tn(6).

It depends only on Jg(¢); since the L-orbits are the level sets of .J Rr, the Hamiltonian is
constant on each L-orbit, and can be written as

H=HolJgp, with ﬁ(M):%(M,I—l(M», (M € G*).

The Euler equation is the differential equation on G* defined by the Hamiltonian vector
field X associated with H, for the plus Lie-Poisson bracket on G*. It can be written as

dM (t) ]

dt = — adI_l (M(t)) M(t) .

Following Arnol’d [1,2], let us define the bilinear map B : G x G — G by
(1o B(X,Y),Z)=(I(X),[Y,Z]), X,YandZeg.
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By the change of variables Q = I—1(M), the Euler equation becomes

dQ(t) _
— = B(Q(t),Q(t)) .

Remark. The variables M and €2 have a natural physical interpretation: M is the
angular momentum in the reference frame of the body and €2 the angular velocity, also in
the reference frame of the body.

The rigid body with a fixed point and gravity effects.

Let us now assume that neither F' nor a vanish. The Hamiltonian H is no more
invariant by the action L of the full group G, but only by the restriction of that action to
the subgroup G of G:

GF:{QEG‘tg(F):F}.

We observe that G is the stabilizer of F' for the action of G on E* contragredient of the
natural action p of G on E. According to Theorem 5, the semi-direct product G; = G X, E
acts on T*G by a Hamiltonian action on the right, ®z. The momentum map J% of that
action, which takes its values in G* x E*, can be expressed as

JE(€) = (Rye)-1& " (ac(€))F) .
The Hamiltonian H can be written as
H=Ho Jg,

where H : G* x E* — R si given by

~

H(M,P) = % (M, I7*(M)) — (P, a).

The Euler equation is the Hamilton differential equation associated to the Hamiltonian H ,
the space G* x E* being equipped with its plus Lie-Poisson bracket. For the 3-dimensional
Euclidean vector space F, the scalar product yields a natural identification of E with its
dual E*; once an orientation is chosen on E, the vector product yields another identification
of E with the Lie algebra G. By combining these identifications we can consider F, E*, G
and G* as being all the same space. The Euler equation becomes:

M
d—:MxI—l(M)—an,
dt

dP

— =PxI " (M

dt X ( )’

where x denotes the vector product in the 3-dimensional oriented, Euclidean vector space
E.
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6. The motion of an ideal incompressible fluid

The assumptions are now those of Example 4 of Section 1. The Lie group G is now the
group Dif f(V,v) of volume-preserving diffeomorphisms of V. We assume that no external
forces are applied to the fluid. Therefore the Hamiltonian of the system corresponds to
the kinetic energy only. It is invariant under the action R of G on T*G, canonical lift of
the action R of G on itself by right translations.

Remark. One may ask why, for the motion of a rigid body with a fixed point, without
gravity effects, the Hamiltonian is invariant by the canonical lift of the action of G on itself
by left translations, while for the motion of an ideal incompressible fluid, without gravity
effects, the Hamiltonian is invariant by the canonical lift of the action of G on itself by
right translations. The explanation is the following.

Let us begin by what is common to both systems (the ideal, incompressible fluid and
the rigid body). Let ¢t — ¢(t) be a smooth curve in the configuration space of the system.
We may think about it as of a motion of the system as a function of time. Remember that
for each ¢, ¢(t) is a map, which sends each material particle z of the system onto its position
©(t)(x) in the physical space F when the configuration of the system is ¢(t). By choosing a
particular configuration ¢ as reference configuration, we may write ¢(t) = g(t) oo, where
t — g(t) is a smooth curve in the group G. Let h be a fixed element in G. The transforms
of t — (t) by the left translation L; and by the right translation R} are, respectively,
t — hg(t) oo and t — g(t)h o pg. By applying this to a particular material particle
x, and by taking the derivative with respect to ¢, we obtain the velocity, in the physical
space E, of that material particle. Taking half the square of the norm of the velocity and
integrating over all the material particles, with respect to the material measure, we obtain
the kinetic energy.

Let us now look about what is particular to each system.

For the ideal incompressible fluid which fills a vessel V fixed in space, we see that
the velocity field of the fluid, in the physical space, is exactly the same for the motions
t+— g(t) oo and t — g(t) o h o pp. The only difference is that the material particle which
is at a given point y € E in the first motion is & = (g(t) o o) 1 (y), while in the second
motion it is (g(t)ho o) " (y) = (g ohowy) " (z). Since the part V of the physical space
in which the fluid flows is fixed, and since the density of the fluid is a constant, the kinetic
energy is the same in the two motions. As a consequence, the Hamiltonian of the system
is invariant under the R-action.

In the contrary, since the diffeomorphism A is not, in general, a rigid displacement, the
velocity fields of the fluid in physical space for the motions ¢ — g(t) oo and t — hg(t) o g
are not the same; therefore the Hamiltonian is not, in general, invariant under the L-action.

For the rigid body with a fixed point, the velocity field in the physical space is, as for
the ideal fluid, the same in the motions ¢ — g¢(t) o ¢o and t — g(t)h o py. But the position
of the rigid body, in the physical space, is not the same in these two motions: a given point
in £ may be occupied by a massive particle for one of these motions, and may be empty
(or occupied by a lighter particle) in the other motion. Therefore the kinetic energy is not
the same in the two motions, and as a consequence, the Hamiltonian of the system is not
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invariant under the R-action.

In the contrary, since h is a rigid displacement, the velocity field in the physical space
for the motion ¢ — hg(t) oy is obtained from the velocity field in the physical space for the
motion ¢t — g(t)opg by the same rigid displacement, h, which maps the configuration of the
rigid body in the motion ¢ — ¢(t) o ¢ onto its configuration in the motion t — hg(t) o pq.
In other words, in a frame attached to the rigid body, the velocity fields in these two
motions are the same. Therefore the kinetic energy of the system is the same in the two
motions. As a consequence, when there are no gravity effects, the Hamiltonian of the
system is invariant under the L-action.

Let us observe that the Hamiltonian of particular systems may have additional invari-
ance properties. For example, the Hamiltonian of a rigid body with a revolution axis of
symmetry, with a fixed point on that axis, is invariant under the restriction of the R-action
to a one-parameter subgroup of SO(FE, 0), made of the rotations around the symmetry axis.
The Hamiltonian of an ideal, incompressible fluid which fills a fixed vessel V' with a revo-
lution symmetry axis is invariant under the restriction of the L-action to a one-parameter
subgroup of Dif f(V,v), made of the rotations around that axis; when the vessel V is a
spherical cavity, the Hamiltonian of the ideal fluid is invariant under the restriction of the
L-action to a 3-dimensional subgroup of Dif f(V,v), made of the rigid rotations around
the centre of V.

The Lie algebra G of G can be identified with the space of divergence-free vector fields
on V tangent to its boundary 0V. However, the composition law in this Lie algebra is the
opposite of the usual bracket of vector fields.

Let us define the pairing (o, X) — (o, X) of a differential 1-form o on V' and a
divergence-free vector field X on V', by the formula

(@, X) = /V<a(a:),X(m)>d'v(m).

Using the fact that X is divergence-free (div X = 0), one can prove that when « is exact
(that means is the differential df of a smooth function f on V'), then (o, X) = 0. When V
is a simply connected compact subset of E with a smooth boundary 0V, the dual space G*
of G can be identified with the quotient space Q'(V)/dQ°(V'), where Q' (V) is the space of
differential 1-forms and Q°(V) the space of smooth functions on V.

We denote by p the volumic mass of the fluid. We assume that the fluid is homoge-
neous; since it is also incompressible, p is a constant.

Let X be an element of G or, in other words, a divergence-free vector field on V' tangent
to the boundary 0V. Using the Euclidean structure of E, we can define the differential
1-form X’ on V such that, for each point z € V and each vector w € E,

<Xb(a:),w> = (X(2) | w),

where ( ‘ ) denotes the scalar product in . We associate with X the differential 1-form

pX°®, and we denote by IX the class modulo dQ°(V) of pX”. The map I : G — G* so
defined is the inertia operator of the system.
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The momentum map Jg, : T*G — G* is the map which associates, with each kinematic
state & € T*G of the system, the element I X of G*, where X is the velocity vector field of
the fluid on V for the kinematic state &.

Exactly as for the motion of a rigid body around a fixed point, the Euler equation is

dM (t .
dt( ) = — adI—1(M(t)) M(t) .

With the same change of variables as in Section 5,
X=I1"1'm),
and the same definition of the bilinear map B : G x G — G, the Euler equation becomes

%t(t) = —B(X (), X(t))-

The explicit expression of B, in terms of the vector product in £ and of the gradient and
curl operators (denoted by grad and cu_ri, respectively), is

B(X,Y) = (curl X) x Y + grad h,

where h is the smooth function (unique up to an additive constant) such that the vector
field B(X,Y) is divergence-free. That function is solution of the Poisson partial differential
equation

Ah + div((euri X) x ¥) = 0.

The Euler equation is therefore

0X(t,x)

ot +(sz(ta3’)) XX(t,r)ﬂﬂLh:o.

Remark. The smooth function A has a physical interpretation: it is related to the
pressure p, the velocity X and the volumic mass p of the fluid by the formula

X2
hoP IXI?
p 2
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7. The Korteweg-de Vries equation as an Euler equation

Let G be the Lie algebra of smooth vector fields on the circle S!, with the bracket
opposite to the usual bracket of vector fields,

10500 5| = (7 @a(e) - g @)1 ) 5

where z is the angular coordinate on S! (defined modulo 27). The components f and g
of the two vector fields on S* are considered as 27-periodic, smooth functions on R.

Let ¢: G x G — R be the bilinear map

(1@ garg) = [ F@e @ s,

An integration by parts shows that ¢ is skew-symmetric:

(1@ g aterg) == (s@) g f0)5, )

The map c satisfies the identity

c([f( );x,g( )gx} h(x)%) + cyclic sum = 0.

The map c is called the Gelfand-Fuchs cocycle of the Lie algebra G.
Let G; = G X R, equipped with the bracket

(1@50) (s01500) | = ([rorgps@ | e (1005001 1))

With that bracket, G; is an infinite-dimensional Lie algebra, called the Virasoro algebra.

There exists an infinite-dimensional Lie group G'; whose Lie algebra is the Virasoro
algebra. It is called the Virasoro-Bott group, and it is the semi-direct product Dif f(S1) xR
of the goup of diffeomorphisms of the circle with R, with the composition law

(pa)b.0) = (wova+ [ mlpow) i)

The dual space Gi of G; is the product G* x R, where G* is the space of differentiable
1-forms on S!. The pairing of G} with G; is given by the formula

<(9(:v) dz,b), (f(:v)(%,a» = /S g(z)f(z) dz + ab.

Let I : G; — GF be the linear map

1(f@)5500) = () do.a),



and let H : G* — R be the function

ﬁ(g(m) dz,a) = % <(g(x) dz,a),I " (g(z) dz, a)>

- (/S (9(2)) de + a2)

Let H be the Hamiltonian on the cotangent bundle T*G1 of the Virasoro-Bott group G,
invariant under the R-action of G, given by

HZﬁOJL,

where J7, is the momentum map of the L-action of G;. The corresponding Euler equation
on Gf, given by the same formulas as in the previous sections, is

0
5 (9(z,t)dz,a(t)) = — zaud*[‘_1 (a6 dr0() (9(z,t) dz,a(t)).

By using the expression of the bracket in G;, and after several integrations by parts, the
FEuler equation can be written as

5 02,0 dz.a(0) = (00 ZH50 4 3g(0,0) 20520 0)

The second component of that equation is

therefore b is a constant. The first component of the above equation becomes:

O9(x,t) _ , 9°g(x,1)

dg(z,t)
ot Ox3 ’

ox

+ 3¢9(z,t)

That equation is the famous Korteweg-de Vries equation on the circle.
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