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Introduction

In this survey, we will try to indicate some important ideas, due in large part to
Alan Weinstein, which led from the study of momentum maps and dual pairs to the
current interest in symplectic and Poisson groupoids. We hope that it will be useful
for readers new to the subject; therefore, we begin by recalling the definitions and
properties which will be used in what follows. More details can be found in [4, 26, 47].

1. A Poisson manifold [27, 48] is a smooth manifold P equipped with a bivector field
(i.e., a smooth section of

∧2
T P ) � which satisfies

[�, �] = 0,

the bracket on the left-hand side being the Schouten bracket [44, 40]. The bivector
field � will be called the Poisson structure on P . It allows us to define a composition
law on the space C∞(P, R) of smooth functions on P , called the Poisson bracket
and denoted by (f, g) �→ {f, g}, by setting, for all f and g ∈ C∞(P, R) and x ∈ P ,

{f, g}(x) = �
(
df (x), dg(x)

)
.

That composition law is skew-symmetric and satisfies the Jacobi identity and therefore
turns C∞(P, R) into a Lie algebra.

2. Let (P, �) be a Poisson manifold. We denote by �� : T ∗P → T P the vector
bundle map defined by
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η, ��(ζ )

〉 = �(ζ, η),

where ζ and η are two elements in the same fibre of T ∗P . Let f : P → R be a smooth
function on P . The vector field Xf = ��(df ) is called the Hamiltonian vector field
associated to f . If g : P → R is another smooth function on P , the Poisson bracket
{f, g} can be written

{f, g} = 〈
dg, ��(df )

〉 = −〈
df, ��(dg)

〉
.

3. Every symplectic manifold (M, ω) has a Poisson structure, associated to its sym-
plectic structure, for which the vector bundle map �� : T ∗M → M is the inverse of
the vector bundle isomorphism v �→ −i(v)ω. We will always consider that a sym-
plectic manifold is equipped with that Poisson structure, unless otherwise specified.

4. Let (P1, �1) and (P2, �2) be two Poisson manifolds. A smooth map ϕ : P1 → P2
is called a Poisson map if for every pair (f, g) of smooth functions on P2,

{ϕ∗f, ϕ∗g}1 = ϕ∗{f, g}2.

5. The product P1 ×P2 of two Poisson manifolds (P1, �1) and (P2, �2) has a natural
Poisson structure: it is the unique Poisson structure for which the bracket of functions
of the form (x1, x2) �→ f1(x1)f2(x2) and (x1, x2) �→ g1(x1)g2(x2), where f1 and
g1 ∈ C∞(P1, R), f2 and g2 ∈ C∞(P2, R), is (x1, x2) �→ {f1, g1}1(x1){f2, g2}2(x2).
The same property holds for the product of any finite number of Poisson manifolds.

6. Let (V , ω) be a symplectic vector space, which means a real, finite-dimensional
vector space V with a skew-symmetric nondegenrate bilinear form ω. Let W be a
vector subspace of V . The symplectic orthogonal of W is

orth W = {
v ∈ V ; ω(v, w) = 0 for all w ∈ W }.

It is a vector subspace of V , which satisfies

dim W + dim(orth W) = dim V, orth(orth W) = W.

The vector subspace W is said to be isotropic if W ⊂ orth W , coisotropic if
orth W ⊂ W , and Lagrangian if W = orth W . In any symplectic vector space, there
are many Lagrangian subspaces; therefore, the dimension of a symplectic vector space
is always even; if dim V = 2n, the dimension of an isotropic (resp., coisotropic, resp.,
Lagrangian) vector subspace is ≤ n (resp., ≥ n, resp., = n).

7. A submanifold N of a Poisson manifold (P, �) is said to be coisotropic if the
bracket of two smooth functions, defined on an open subset of P and which vanish
on N , vanishes on N too. A submanifold N of a symplectic manifold (M, ω) is
coisotropic if and only if for each point x ∈ N , the vector subspace TxN of the
symplectic vector space

(
TxM, ω(x)

)
is coisotropic. Therefore, the dimension of a

coisotropic submanifold in a 2n-dimensional symplectic manifold is ≥ n; when it is
equal to n, the submanifold N is said to be Lagrangian.
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8. A dual pair [48, 4] is a pair (ϕ1 : M → P1, ϕ2 : M → P2) of smooth Poisson
maps, defined on the same symplectic manifold (M, ω), with values in the Poisson
manifolds (P1, �1) and (P2, �2), such that for each x ∈ M , the two equivalent
equalities hold:

ker(Txϕ1) = orth
(
ker(Txϕ2)

)
, ker(Txϕ2) = orth

(
ker(Txϕ1)

)
.

That property implies that for all f1 ∈ C∞(P1, R) and f2 ∈ C∞(P2, R),

{ϕ∗
1f1, ϕ

∗
2f2} = 0.

Adual pair (ϕ1, ϕ2) is specially interesting when ϕ1 and ϕ2 are surjective submersions.

9. Let ϕ : M → P be a surjective submersion of a symplectic manifold (M, ω) onto
a manifold P . The manifold P has a Poisson structure � for which ϕ is a Poisson
map if and only if orth(ker T ϕ) is integrable [23]. When that condition is satisfied,
this Poisson structure on P is unique. If in addition there exist a smooth manifold P2
and a smooth map ϕ2 : M → P2 such that ker T ϕ2 = orth(ker T ϕ), the manifold
P2 has a unique Poisson structure �2 for which ϕ2 is a Poisson map, and (ϕ, ϕ2) is a
dual pair.

10. A symplectic realization [48] of a Poisson manifold (P, �) is a Poisson map
ϕ : M → P , defined on a symplectic manifold (M, ω), with values in P .Asymplectic
realization ϕ : M → P is specially interesting when ϕ is a surjective submersion;
such a symplectic realization is said to be surjective submersive.

For example, in a dual pair (ϕ1 : M → P1, ϕ2 : M → P2), ϕ1 and ϕ2 are
symplectic realizations of the Poisson manifolds (P1, �1) and (P2, �2), respectively.

1 A typical example: action of a Lie group on its cotangent bundle

Let G be a Lie group, πG : T ∗G → G its cotangent bundle. For each g and h ∈ G,
we write

Lg(h) = gh, Rg(h) = hg.

We denote by L̂g and R̂g the canonical lifts to T ∗G of Lg and Rg , respectively. We
recall that, for g and h ∈ G, ξ ∈ T ∗

h G, X ∈ TghG and Y ∈ ThgG, we have〈
L̂g(ξ), X

〉 = 〈ξ, T Lg−1X〉, 〈
R̂g(ξ), Y

〉 = 〈ξ, T Rg−1Y 〉.

The maps L̂ : G × T ∗G → T ∗G, (g, ξ) �→ L̂gξ , and R̂ : T ∗G × G → T ∗G,
(ξ, g) �→ R̂gξ , are actions of the Lie group G on its cotangent bundle T ∗G, on the
left and on the right, respectively.

Theorem 1.1. These two actions are Hamiltonian and have as momentum maps,
respectively, the maps

JL : T ∗G → G∗, JL(ξ) = R̂πG(ξ)−1ξ
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and
JR : T ∗G → G∗, JR(ξ) = L̂πG(ξ)−1ξ,

where G∗ is the dual of the Lie algebra G of G. We have identified G with TeG and
G∗ with T ∗

e G. We have denoted by πG : T ∗G → G the cotangent bundle projection.
Moreover,

• the level sets of JL are the orbits of the action R̂,
• the level sets of JR are the orbits of the action L̂,
• for each ξ ∈ T ∗G, each one of the tangent spaces at ξ to the orbits of that point

under the actions R̂ and L̂ is the symplectic orthogonal of the other one.

The dual G∗ of the Lie algebra G has two (opposite) natural Poisson structures,
called the plus and the minus KKS-Poisson structures (the letters KKS stand for
Kirillov [19], Kostant [21], and Souriau [45]). The brackets of two smooth functions
f and g ∈ C∞(G∗, R) are given by the formulae

{f, g}+(η) = 〈
η,

[
df (η), dg(η)

]〉
and {f, g}−(η) = −〈

η,
[
df (η), dg(η)

]〉
.

Then we have the following.

Theorem 1.2. The map JL : T ∗G → G∗ (resp., the map JR : T ∗G → G∗) is
a Poisson map when T ∗G is equipped with the Poisson structure associated to its
canonical symplectic structure and G∗ with the minus KKS-Poisson structure (resp,
with the plus KKS-Poisson structure).

The pair of maps (JL, JR) in the above theorem is a very simple example of a
dual pair; both JL and JR are surjective submersions. The cotangent space T ∗G,
equipped with its canonical symplectic structure, is a symplectic realization of each
of the Poisson manifolds

(
G∗, {, }+

)
and

(
G∗, {, }−

)
.

2 Hamiltonian action of a Lie group on a symplectic manifold

The example dealt with in the preceding section is very symmetrical: the roles of the
two actions L̂ and R̂ could be exchanged by means of the group anti-automorphism
g �→ g−1 of the Lie group G. In this section, we will see that a similar situation
(although less symmetrical) holds for a Hamiltonian action of a Lie group on a sym-
plectic manifold.

Definitions 2.1. Let 	 : G × M → M be an action (for example, on the left) of a
Lie group G on a symplectic manifold (M, ω). That action is said to be symplectic
if, for any g ∈ G,

	∗
gω = ω.

It is said to be Hamiltonian if it is symplectic and if, in addition, there exists a smooth
map J : M → G∗ such that, for each X ∈ G, the fundamental vector field XM is
Hamiltonian, with the function 〈J, X〉 : x �→ 〈

J (x), X
〉

as Hamiltonian. The map J

is called the momentum map of 	.
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2.2 Comments

Let us indicate briefly some important properties of Hamiltonian actions.

The fundamental vector fields

Under the assumptions of the above definitions, we recall that the fundamental vector
field XM associated to an element X ∈ G (the Lie algebra of G) is the vector field on
M defined by

XM(x) = d

dt
	

(
exp(tX), x

) ∣∣
t=0,

where x ∈ M . The formula

i(XM)ω(x) = −d〈J, X〉(x)

expresses that XM is the Hamiltonian vector field associated to the function 〈J, X〉.

The momentum map equivariance

When M is connected, there exists a smooth map θ : G → G∗ such that, for all g ∈ G

and x ∈ M ,
J
(
	(g, x)

) = Ad∗
g

(
J (x)

) + θ(g),

where Ad∗ : G × G∗ → G∗ is the coadjoint action, defined by〈
Ad∗

g(ξ), X
〉 = 〈

ξ, Adg−1(X)
〉
, ξ ∈ G∗, X ∈ G.

The map θ satisfies, for all g and h ∈ G,

θ(gh) = Ad∗
g

(
θ(h)

) + θ(g),

and is called a symplectic cocycle of G [45]. As a consequence, the map

aθ : G × G∗ → G∗, aθ (g, ξ) = Ad∗
g(ξ) + θ(g),

is an action on the left of G on G∗, called the affine action associated to θ . The
momentum map J : M → G∗ is equivariant when G acts on M by the action 	 and
on G∗ by the affine action aθ .

The modified KKS-Poisson structures

Moreover, the momentum map J is a Poisson map when M is equipped with the
Poisson structure associated to its symplectic structure, and G∗ with the modified
KKS-Poisson structure [45]:

{f, g}θ−(ξ) = −〈
ξ,

[
df (ξ), dg(ξ)

]〉 + �
(
df (ξ), dg(ξ)

)
,

where � : G × G → R is the map defined by
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�(X, Y ) = 〈
Teθ(X), Y

〉
.

When considered as a linear map from G to its dual G∗, the map � is a G∗-valued 1-
cocycle of the Lie algebra G, which corresponds to the 1-cocycle θ of the Lie group G.
Considered as a real-valued skew-symmetric bilinear map on G×G, � is a real-valued
2-cocycle of the Lie algebra G.

Symplectic orthogonality

For each x ∈ M , each one of the vector subspaces of the symplectic vector space(
TxM, ω(x)

)
,

• the tangent space at x to the orbit 	(G, x),
• the kernel of TxJ ,

is the symplectic orthogonal of the other one.

2.3 Remarks and questions

Several features of dual pairs and symplectic realizations exist in a Hamiltonian action
of a Lie group G on a symplectic manifold (M, ω): the momentum map J : M → G∗
is a symplectic realization of G∗ equipped with the modified KKS-Poisson structure;
the symplectic orthogonality, for all x ∈ M , of ker TxJ and Tx	(G, x), looks very
much like the property of a dual pair; more precisely, if we assume that the set M/G

of orbits of 	 has a smooth manifold structure for which the canonical projection
π : M → M/G is a submersion, there is on M/G a unique Poisson structure for
which π is a Poisson map, and (J, π) is a dual pair. However, the momentum map
J may not be a submersion (it is a submersion if and only if the action 	 is locally
free), and the set M/G may not have a smooth manifold structure for which π is a
submersion.

In order to make the Hamiltonian action of a Lie group more like the simple
example of Section 1, we are led to the following questions:

1. Does there exist an “action’’ (in a generalized sense) on the manifold M whose
orbits are the level sets of the momentum map J ?

2. In the theory of momentum maps, can we replace the dual of a Lie algebra by a
more general Poisson manifold?

3. Does any Poisson manifold have a symplectic realization?

The notion of symplectic groupoid, introduced in the next section, will allow us to
answer some of these questions.

3 Lie groupoids and symplectic groupoids

We recall below the definition of a groupoid. The reader will find examples and more
information about groupoids in [4, 6, 33, 43, 52].
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Definition 3.1. A groupoid is a set � equipped with the structure defined by the fol-
lowing data:

• a subset �0 of �, called the set of units of the groupoid;
• two maps α : � → �0 and β : � → �0, called, respectively, the target map and

the source map; they satisfy

α|�0 = β|�0 = id�0;
• a composition law m : �2 → �, called the product, defined on the subset �2 of

� × �,
�2 = {

(x, y) ∈ � × �; β(x) = α(y)
}
,

which is associative, in the sense that whenever one side of the equality

m
(
x, m(y, z)

) = m
(
m(x, y), z

)
is defined, the other side is defined too, and the equality holds; moreover, the
composition law m is such that for each x ∈ �,

m
(
α(x), x

) = m
(
x, β(x)

) = x;
• a map ι : � → �, called the inverse, such that, for every x ∈ �,

(
x, ι(x)

) ∈ �2
and

(
ι(x), x

) ∈ �2, and

m
(
x, ι(x)

) = α(x), m
(
ι(x), x

) = β(x).

3.2 Properties and comments

The above definitions have the following consequences.

Involutivity of the inverse

The inverse map ι is involutive. We have indeed, for any x ∈ �,

i2(x) = m
(
i2(x), β

(
i2(x)

)) = m
(
i2(x), β(x)

) = m
(
i2(x), m

(
i(x), x

))
= m

(
m

(
i2(x), i(x)

)
, x

) = m
(
α(x), x

) = x.

Unicity of the inverse

Let x and y ∈ � be such that

m(x, y) = α(x) and m(y, x) = β(x).

Then we have

y = m
(
y, β(y)

) = m
(
y, α(x)

) = m
(
y, m

(
x, ι(x)

)) = m
(
m(y, x), ι(x)

)
= m

(
β(x), ι(x)

) = m
(
α
(
ι(x)

)
, ι(x)

) = ι(x).

Therefore, for any x ∈ �, the unique y ∈ � such that m(y, x) = β(x) and m(x, y) =
α(x) is ι(x).
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Notations

A groupoid � with set of units �0 and target and source maps α and β will be denoted

by �
α

⇒
β

�0.

When there is no risk of error, for x and y ∈ �, we will write x.y, or even simply
xy for m(x, y), and x−1 for ι(x).

Definitions 3.3. A topological groupoid is a groupoid �
α

⇒
β

�0 for which � is a (maybe

non-Hausdorff ) topological space, �0 a Hausdorff topological subspace of �, α and
β surjective continuous maps, m : �2 → � a continuous map and ι : � → � an
homeomorphism.

A Lie groupoid is a groupoid �
α

⇒
β

�0 for which � is a smooth (maybe non-

Hausdorff ) manifold, �0 a smooth Hausdorff submanifold of �, α and β smooth
surjective submersions (which implies that �2 is a smooth submanifold of � × �),

m : �2 → � a smooth map and ι : � → � a smooth diffeomorphism.

3.4 Properties and examples of Lie groupoids

1. Let �
α

⇒
β

�0 be a Lie groupoid. Since α and β are submersions, for any x ∈ �,

α−1
(
α(x)

)
and β−1

(
β(x)

)
are submanifolds of �, both of dimension dim �−dim �0,

called the α-fibre and the β-fibre through x, respectively. The inverse map ι, restricted
to the α-fibre through x (resp., the β-fibre through x) is a diffeomorphism of that fibre
onto the β-fibre through ι(x) (resp., the α-fibre through ι(x)). The dimension of the
submanifold �2 of composable pairs in � × � is 2 dim � − dim �0.

2. A Lie group is a Lie groupoid whose set of units has only one element e.

3. A vector bundle π : E → M is a Lie groupoid, with the base M as a set of units;
the source and target maps both coincide with the projection π , the product and the
inverse maps are the addition (x, y) �→ x + y and the opposite map x �→ −x in the
fibres.

4. Let �
α

⇒
β

�0 be a Lie groupoid. Its tangent bundle T � is a Lie groupoid, with T �0

as a set of units, T α : T � → T �0, and Tβ : T � → T �0 as target and source
maps. Let us denote by �2 the set of composable pairs in � × �, by m : �2 → � the
composition law and by ι : � → � the inverse. Then the set of composable pairs in
T � × T � is simply T �2, the composition law on T � is T m : T �2 → T � and the
inverse is T ι : T � → T �.

When the groupoid � is a Lie group G, the Lie groupoid T G is a Lie group too.
We will see below that the cotangent bundle of a Lie groupoid is a Lie groupoid,

and more precisely a symplectic groupoid.
Let us now introduce the important notion of symplectic groupoid, first considered

by A. Weinstein [6], M. Karasev [18] and S. Zakrzewski [58].
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Definition 3.5. A symplectic groupoid is a Lie groupoid �
α

⇒
β

�0 with a symplectic

form ω on � such that the graph of the composition law m{
(x, y, z) ∈ � × � × �; (x, y) ∈ �2 and z = m(x, y)

}
is a Lagrangian submanifold of � ×� ×� with the product symplectic form, the first
two factors � being endowed with the symplectic form ω, and the third factor � being
� with the symplectic form −ω.

The next theorem states important properties of symplectic groupoids.

Theorem 3.6. Let �
α

⇒
β

�0 be a symplectic groupoid, with the symplectic 2-form ω.

We have the following properties:

1. For any point c ∈ �, each one of the two vector subspaces of the symplectic
vector space

(
Tc�, ω(c)

)
,

Tc

(
β−1(β(c)

))
and Tc

(
α−1(α(c)

))
is the symplectic orthogonal of the other one.

2 The submanifold of units �0 is a Lagrangian submanifold of the symplectic man-
ifold (�, ω).

3. The inverse map ι : � → � is an antisymplectomorphism of (�, ω) (it satisfies
ι∗ω = −ω).

Proof. For each x ∈ �, we denote by Px = β−1
(
β(x)

)
and Qx = α−1

(
α(x)

)
the β-fibre and the α-fibre through x, respectively. Let dim � = 2n. We have seen
that dim �2 = 2 dim � − dim �0. Since the graph of the product is a Lagrangian
submanifold of � × � × �, its dimension is half that of � × � × �, so

2(2 dim � − dim �0) = 3 dim �;
therefore, dim �0 = (1/2) dim � = n. Since α and β are smooth submersions, for
each point x ∈ �, Px and Qx are smooth n-dimensional submanifolds of �.

1. Let (a, b) ∈ �2 and c = m(a, b). The maps La : y �→ m(a, y) and Rb : x �→
m(x, b) are diffeomorphisms which map, respectively, Qb onto Qc and Pa onto Pc.
Therefore, if u ∈ TaPa and v ∈ TbQb, w1 and w2 ∈ Tc�, the vectors (u, 0, w1) and
(0, v, w2) ∈ T(a,b,c)(� × � × �) are tangent to the graph of the product m if and
only if

w1 = T Rb(u) and w2 = T La(v).

By writing that the graph of m is Lagrangian in � × � × �, we obtain

ω(u, 0) + ω(0, v) − ω
(
T Rb(u), T La(v)

) = 0,

so, for all u ∈ TaPa and v ∈ TbQb,
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ω(T Rb(u), T La(v)
) = 0.

Since T Rb(u) can be any vector in TcPc and T La(v) any vector in TcQc, we have
shown that orth(TcPc) ⊃ TcQc. But since these two subspaces are of dimension n,
orth(TcPc) = TcQc, and orth(TcQc) = TcPc.

2. Let p ∈ �0. We have m(p, p) = p; therefore, for u1 and u2 ∈ Tp�0, (u1, u1, u1)

and (u2, u2, u2) are tangent to the graph of m. Since that graph is Lagrangian in
� × � × �, we have

0 = ω(u1, u2) + ω(u1, u2) − ω(u1, u2) = ω(u1, u2).

This shows that �0 is an isotropic submanifold of �. But since dim �0 = n, �0 is
Lagrangian.

3. Let x ∈ �, u1 and u2 ∈ Tx�, v1 = T ι(u1), v2 = T ι(u2). Let t �→ s1(t) and
t �→ s2(t) be smooth curves in � such that s1(0) = s2(0) = x,

(
ds1(t)/dt

)|t=0 = u1
and

(
ds2(t)/dt

)|t=0 = u2. For i = 1 or 2, we have

m
(
si(t), ι ◦ si(t)

) = α ◦ si(x).

Therefore, if we set w1 = T α(u1) and w2 = T α(u2), the vectors (u1, v1, w1) and
(u2, v2, w2) are tangent at

(
x, ι(x), α(x)

)
to the graph of m. Since that graph is

Lagrangian in � × � × �, we have

ω(u1, u2) + ω
(
T ι(u1), T ι(u2)

) − ω(w1, w2) = 0.

But since w1 and w2 are tangent at α(x) to the Lagrangian submanifold �0,
ω(w1, w2) = 0. It follows that ι : � → � is an antisymplectomorphism. �

Corollary 3.7. Let �
α

⇒
β

�0 be a symplectic groupoid, with symplectic 2-form ω. There

exists on �0 a unique Poisson structure � for which α : � → �0 is a Poisson map,
and β : � → �0 an anti-Poisson map (i.e., β is a Poisson map when �0 is equipped
with the Poisson structure −�). The pair

(
α : (�, ω) → (�0, �), β : (�, ω) →

(�0, −�)
)

is a dual pair, and (�, ω) is a symplectic realization of both (�0, �) and
(�0, −�).

Proof. According to the previous theorem, the symplectic orthogonal of ker(T α)

is ker(Tβ). By Property 9 of the Introduction, there exists on �0 a unique Poisson
structure � such that α is a Poisson map from (�, ω) to (�0, �). For the same reason
there exists on �0 another unique Poisson structure �′ such that β is a Poisson map
from (�, ω) to (�0, �

′). But β = α ◦ ι, and the previous theorem shows that ι is an
antisymplectomorphism. Therefore, �′ = −�. �

3.8 Cotangent bundle of a Lie groupoid

Let �
α

⇒
β

�0 be a Lie groupoid. We have seen above that its tangent bundle T � has a

Lie groupoid structure, determined by that of �. Similarly (but much less obviously)
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the cotangent bundle T ∗� has a Lie groupoid structure determined by that of �. The
set of units is the conormal bundle to the submanifold �0 of �, denoted by N∗�0. We
recall that N∗�0 is the vector subbundle of T ∗

�0
� (the restriction to �0 of the cotangent

bundle T ∗�) whose fibre N∗
p�0 at a point p ∈ �0 is

N∗
p�0 = {

η ∈ T ∗
p �; 〈η, v〉 = 0 for all v ∈ Tp�0

}
.

To define the target and source maps of the Lie algebroid T ∗�, we introduce the notion
of bisection through a point x ∈ � [6, 1, 4]. A bisection through x is a submanifold A

of �, with x ∈ A, transverse both to the α-fibres and to the β-fibres, such that the maps
α and β, when restricted to A, are diffeomorphisms of A onto open subsets α(A) and
β(A) of �0, respectively. For any point x ∈ M , there exist bisections through x. A
bisection A allows us to define two smooth diffeomorphisms between open subsets of
�, denoted by LA and RA and called the left and right translations by A, respectively.
They are defined by

LA : α−1(β(A)
) → α−1(α(A)

)
, LA(y) = m

(
β|−1

A ◦ α(y), y
)
,

and

RA : β−1(α(A)
) → β−1(β(A)

)
, RA(y) = m

(
y, α|−1

A ◦ β(y)
)
.

The definitions of the target and source maps for T ∗� rest on the following properties.
Let x be a point in � and let A be a bisection through x. The two vector subspaces,
Tα(x)�0 and ker Tα(x)β, are complementary in Tα(x)�. For any v ∈ Tα(x)�, v−Tβ(v)

is in ker Tα(x)β. Moreover, RA maps the fibre β−1
(
α(x)

)
onto the fibre β−1

(
β(x)

)
,

and its restriction to that fibre does not depend on the choice of A; its depends only
on x. Therefore, T RA

(
v − Tβ(v)

)
is in ker Txβ and does not depend on the choice

of A. We can define the map α̂ by setting, for any ξ ∈ T ∗
x � and any v ∈ Tα(x)�,〈̂

α(ξ), v
〉 = 〈

ξ, T RA

(
v − Tβ(v)

)〉
.

Similarly, we define β̂ by setting, for any ξ ∈ T ∗
x � and any w ∈ Tβ(x)�,〈

β̂(ξ), w
〉 = 〈

ξ, T LA

(
w − T α(w)

)〉
.

We see that α̂ and β̂ are unambiguously defined, smooth and take their values in the
submanifold N∗�0 of T ∗�. They satisfy

π� ◦ α̂ = α ◦ π�, π� ◦ β̂ = β ◦ π�,

where π� : T ∗� → � is the cotangent bundle projection.
Let us now define the composition law m̂ on T ∗�. Let ξ ∈ T ∗

x � and η ∈ T ∗
y �

be such that β̂(ξ) = α̂(η). That implies β(x) = α(y). Let A be a bisection through
x and B a bisection through y. There exist a unique ξhα ∈ T ∗

α(x)�0 and a unique
ηhβ ∈ T ∗

β(y)�0 such that

ξ = (L−1
A )∗

(
β̂(ξ)

) + α∗
xξhα, η = (R−1

B )∗
(̂
α(ξ)

) + β∗
y ηhβ.
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Then m̂(ξ, η) is given by

m̂(ξ, η) = α∗
xyξhα + β∗

xyηhβ + (R−1
B )∗(L−1

A )∗
(
β̂(x)

)
.

We observe that in the last term of the above expression we can replace β̂(ξ) by α̂(η),
since these two expressions are equal, and that (R−1

B )∗(L−1
A )∗ = (L−1

A )∗(R−1
B )∗,

since RB and LA commute.
Finally, the inverse ι̂ in T ∗� is ι∗.

With its canonical symplectic form, T ∗�
α̂

⇒
β̂

N∗�0 is a symplectic groupoid.

When the Lie groupoid � is a Lie group G, the Lie groupoid T ∗G is not a Lie
group, contrary to what happens for T G. Its set of units can be identified with G∗,
and we recover the typical example of Section 1, with α̂ = JL and β̂ = JR .

4 Lie algebroids

Let us now introduce the notion of a Lie algebroid, related to that of a Lie groupoid
in the same way as the notion of a Lie algebra is related to that of a Lie group. That
notion is due to J. Pradines [41].

Definition 4.1. A Lie algebroid over a smooth manifold M is a smooth vector bundle
π : A → M with base M , equipped with

• a composition law (s1, s2) �→ {s1, s2} on the space �∞(π) of smooth sections of
π , called the bracket, for which that space is a Lie algebra,

• a vector bundle map ρ : A → T M , over the identity map of M , called the anchor
map, such that, for all s1 and s2 ∈ �∞(π) and all f ∈ C∞(M, R),

{s1, f s2} = f {s1, s2} + (
(ρ ◦ s1).f

)
s2.

4.2 Examples

1. A finite-dimensional Lie algebra is a Lie algebroid (with a base reduced to a point).

2. A tangent bundle τM : T M → M to a smooth manifold M is a Lie algebroid,
with the usual bracket of vector fields on M as composition law, and the identity
map as anchor map. More generally, any integrable vector subbundle F of a tangent
bundle τM : T M → M is a Lie algebroid, still with the bracket of vector fields on
M with values in F as composition law and the canonical injection of F into T M as
anchor map.

3. Let X : M → T M be a smooth vector field on a smooth manifold M . By setting,
for any pair (f, g) of smooth functions on M ,

[f, g] = f (X.g) − g(X.f ),
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we define on C∞(M, R) a composition law (which is a special case of a Jacobi
bracket) which turns that space into a Lie algebra. We may identify the space
C∞(M, R) of smooth functions on M with the space of smooth sections of the trivial
vector bundle p1 : M × R → M , where p1 is the projection on the first factor; in
that identification, a smooth function f ∈ C∞(M, R) is identified with the section

sf : M → M × R, sf (x) = (
x, f (x)

)
.

The Jacobi bracket of functions defined above becomes a bracket

(sf , sg) �→ {sf , sg} = s[f,g]

on the space of smooth sections of the trivial bundle p1 : M × R → M . It is easy to
see that with the anchor map

ρ : M × R → T M, ρ(x, k) = kX(x),

that bundle becomes a Lie algebroid over M .

4. Let (P, �) be a Poisson manifold. Its cotangent bundle πP : T ∗P → P has a
Lie algebroid structure, with �� : T ∗P → T P as anchor map. The composition law
is the bracket of 1-forms, first obtained by Fuchssteiner [14], then independently by
Magri and Morosi [36]. It will be denoted by (η, ζ ) �→ [η, ζ ] (in order to avoid any
confusion with the Poisson bracket of functions). It is given by the formula, in which
η and ζ are 1-forms and X a vector field on P ,〈[η, ζ ], X〉 = �

(
η, d〈ζ, X〉) + �

(
d〈η, X〉, ζ ) + (

L(X)�
)
(η, ζ ).

We have denoted by L(X)� the Lie derivative of the Poisson tensor � with respect
to the vector field X. Another equivalent formula for that composition law is

[ζ, η] = L(��ζ )η − L(��η)ζ − d
(
�(ζ, η)

)
.

The bracket of 1-forms is related to the Poisson bracket of functions by

[df, dg] = d{f, g} for all f and g ∈ C∞(P, R).

4.3 Properties of Lie algebroids

Let π : A → M be a Lie algebroid with anchor map ρ : A → T M .

1. It is easy to see that for any pair (s1, s2) of smooth sections of π ,

ρ ◦ {s1, s2} = [ρ ◦ s1, ρ ◦ s2],
which means that the map s �→ ρ ◦ s is a Lie algebra homomorphism from the Lie
algebra of smooth sections of π into the Lie algebra of smooth vector fields on M .

2. The composition law (s1, s2) �→ {s1, s2} on the space of sections of π extends into
a composition law on the space of sections of exterior powers of (A, π, M), which
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will be called the generalized Schouten bracket. Its properties are the same as those
of the usual Schouten bracket [44, 40, 22]. When the Lie algebroid is a tangent bundle
τM : T M → M , that composition law reduces to the usual Schouten bracket . When
the Lie algebroid is the cotangent bundle πP : T ∗P → P to a Poisson manifold
(P, �), the generalized Schouten bracket is the bracket of forms of all degrees on the
Poisson manifold P , introduced by J.-L. Koszul [22], which extends the bracket of 1
forms used in Example 4 of 4.2.

3. Let � : A∗ → M be the dual bundle of the Lie algebroid π : A → M . There
exists on the space of sections of its exterior powers a graded endomorphism dρ , of
degree 1 (this means that if η is a section of

∧k
A∗, dρ(η) is a section of

∧k+1
A∗).

That endomorphism satisfies
dρ ◦ dρ = 0,

and its properties are essentially the same as those of the exterior derivative of differ-
ential forms. When the Lie algebroid is a tangent bundle τM : T M → M , dρ is the
usual exterior derivative of differential forms.

We can develop on the spaces of sections of the exterior powers of a Lie algebroid
and of its dual bundle a differential calculus very similar to the usual differential
calculus of vector and multivector fields and differential forms on a manifold [6,
4, 34, 37]. Operators such as the interior product, the exterior derivative and the Lie
derivative can still be defined and have properties similar to those of the corresponding
operators for vector and multivector fields and differential forms on a manifold.

4.4 The Lie algebroid of a Lie groupoid

Let �
α

⇒
β

�0 be a Lie groupoid. Let A(�) be the intersection of ker T α and T�0� (the

tangent bundle T � restricted to the submanifold �0). We see that A(�) is the total
space of a vector bundle π : A(�) → �0, with base �0, the canonical projection π

being the map which associates a point u ∈ �0 to every vector in ker Tuα. We will
define a composition law on the set of smooth sections of that bundle, and a vector
bundle map ρ : A(�) → T �0, for which π : A(�) → �0 is a Lie algebroid, callled

the Lie algebroid of the Lie groupoid �
α

⇒
β

�0.

We observe first that for any point u ∈ �0 and any point x ∈ β−1(u), the map
Lx : y �→ Lxy = m(x, y) is defined on the α-fibre α−1(u), and maps that fibre
onto the α-fibre α−1

(
α(x)

)
. Therefore, TuLx maps the vector space Au = ker Tuα

onto the vector space ker Txα, tangent at x to the α-fibre α−1
(
α(x)

)
. Any vector

w ∈ Au can therefore be extended into the vector field along β−1(u), x �→ ŵ(x) =
TuLx(w). More generally, let w : U → A(�) be a smooth section of the vector
bundle π : A(�) → �0, defined on an open subset U of �0. By using the above
described construction for every point u ∈ U , we can extend the section w into a
smooth vector field ŵ, defined on the open subset β−1(U) of �, by setting, for all
u ∈ U and x ∈ β−1(u),

ŵ(x) = TuLx

(
w(u)

)
.
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We have defined an injective map w �→ ŵ from the space of smooth local sections of
π : A(�) → �0, onto a subspace of the space of smooth vector fields defined on open
subsets of �. The image of that map is the space of smooth vector fields ŵ, defined
on open subsets Û of � of the form Û = β−1(U), where U is an open subset of �0,
which satisfy the two properties:

(i) T α ◦ ŵ = 0,
(ii) for every x and y ∈ Û such that β(x) = α(y), TyLx

(
ŵ(y)

) = ŵ(xy).

These vector fields are called left-invariant vector fields on �.
One can easily see that the space of left-invariant vector fields on � is closed

under the bracket operation. We can therefore define a composition law (w1, w2) �→
{w1, w2} on the space of smooth sections of the bundle π : A(�) → �0 by defining
{w1, w2} as the unique section such that

̂{w1, w2} = [ŵ1, ŵ2].
Finally, we define the anchor map ρ as the map Tβ restricted to A(�). One can
easily check that with that composition law and that anchor map, the vector bundle
π : A(�) → �0 is a Lie algebroid, called the Lie algebroid of the Lie groupoid

�
α

⇒
β

�0.

We could exchange the roles of α and β and use right-invariant vector fields
instead of left-invariant vector fields. The Lie algebroid obtained remains the same,
up to an isomorphism.

When the Lie groupoid �
α

⇒
β

is a Lie group, its Lie algebroid is simply its Lie

algebra.

4.5 The Lie algebroid of a symplectic groupoid

Let �
α

⇒
β

�0 be a symplectic groupoid, with symplectic form ω. As we have seen

above, its Lie algebroid π : A → �0 is the vector bundle whose fibre, over each
point u ∈ �0, is ker Tuα. We define a linear map ω

�
u : ker Tuα → T ∗

u �0 by setting,
for each w ∈ ker Tuα and v ∈ Tu�0,〈

ω�
u(w), v

〉 = ωu(v, w).

Since Tu�0 is Lagrangian and ker Tuα complementary to Tu�0 in the symplectic
vector space

(
Tu�, ω(u)

)
, the map ω

�
u is an isomorphism from ker Tuα onto T ∗

u �0.
By using that isomorphism for each u ∈ �0, we obtain a vector bundle isomorphism
of the Lie algebroid π : A → �0 onto the cotangent bundle π�0 : T ∗�0 → �0.

As seen in Corollary 3.7, the submanifold of units�0 has a unique Poisson structure
� for which α : � → �0 is a Poisson map. Therefore, as seen in Example 4 of 4.2,
the cotangent bundle π�0 : T ∗�0 → �0 to the Poisson manifold (�0, �) has a Lie
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algebroid structure, with the bracket of 1-forms as composition law. That structure is
the same as the structure obtained as a direct image of the Lie algebroid structure of
π : A(�) → �0, by the above defined vector bundle isomorphism of π : A → �0
onto the cotangent bundle π�0 : T ∗�0 → �0. The Lie algebroid of the symplectic

groupoid �
α

⇒
β

�0 can therefore be identified with the Lie algebroid π�0 : T ∗�0 → �0,

with its Lie algebroid structure of cotangent bundle to the Poisson manifold (�0, �).

4.6 The dual bundle of a Lie algebroid

There exist some very close relationships between Lie algebroids and Poisson man-
ifolds, discussed, for example, in [11]. We have already seen one such relationship:
the cotangent bundle of a Poisson manifold has a Lie algebroid structure. We now
describe another one.

Let π : A → M be a Lie algebroid over a manifold M , with ρ : A → T M

as anchor map. Let � : A∗ → M be the dual bundle of π : A → M . We observe
that a smooth section s of π can be considered as a smooth function on A∗, whose
restriction to each fibre �−1(x) (x ∈ M) is the linear function ζ �→ 〈

ζ, s(x)
〉
. By

using that property, we see that the total space A∗ has a unique Poisson structure,
whose bracket extends, for smooth functions, the bracket of sections of π .

When the Lie algebroid is a finite-dimensional Lie algebra G, the Poisson structure
on its dual space G∗ obtained by that means is the KKS-Poisson structure, already
discussed in Section 1.

5 Integration of Lie algebroids and Poisson manifolds

According to Lie’s third theorem, for any given finite-dimensional Lie algebra, there
exists a Lie group whose Lie algebra is isomorphic to that Lie algebra. The same
property is not true for Lie algebroids and Lie groupoids. The problem of finding
necessary and sufficient conditions under which a given Lie algebroid is isomorphic
to the Lie algebroid of a Lie groupoid remained open for more than 30 years. Partial
results were obtained by J. Pradines [42], K. Mackenzie [33], P. Dazord [9], P. Dazord
ans G. Hector [10]. A complete solution of that problem was obtained by M. Crainic
and R. L. Fernandes [7]. Let us describe their very important work.

5.1 The Weinstein groupoid of a Lie algebroid

Admissible paths in a Lie algebroid

Let π : A → M be a Lie algebroid and ρ : A → T M its anchor map. Let a : I =
[0, 1] → A be a smooth path in A. We will say that a is admissible if, for all t ∈ I ,

ρ ◦ a(t) = d

dt
(π ◦ a)(t).
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We observe that when the Lie algebroid is the tangent bundle τM : T M → M , with
the identity of T M as anchor map, a smooth path a : I → T M is admissible if and
only if it is the canonical lift to T M of the smooth path τM ◦ a : I → M in M . For a
general Lie algebroid, a smooth path a : I → A is admissible if and only if the map

â : T I = I × R → A, â(t, λ) = λa(t),

is a Lie algebroid homomorphism of the Lie algebroid p1 : I × R → I into the Lie
algebroid π : A → M , over the map π ◦ a : I → M between the bases of these two
Lie algebroids.

Associated paths in a Lie groupoid and in its Lie algebroid

Let us assume that π : A → M is the Lie algebroid of a Lie groupoid over M ,

�
α

⇒
β

M . Let γ : I = [0, 1] → � be a smooth path in �, starting from a unit

x = γ (0) ∈ M ⊂ �, and contained in the α-fibre α−1(x), i.e., such that, for all t ∈ I ,

α ◦ γ (t) = x.

For each t ∈ I ,
dγ (t)

dt
is a vector tangent to the fibre α−1(x), at the point γ (t).

Applying to that vector a left translation by γ (t)−1, we obtain a vector,

aγ (t) = T Lγ (t)−1

(
dγ (t)

dt

)
∈ ker Tβ◦γ (t)α.

But we have seen (4.4) that for each y ∈ M , the vector subspace ker Tyα of Ty� is the

fibre Ay over y of the Lie algebroid of the Lie groupoid �
α

⇒
β

M . The map t �→ aγ (t)

is therefore a smooth path in the Lie algebroid π : A → M . That path will be said to

be associated to the path γ in the Lie groupoid �
α

⇒
β

M . Since we have

β ◦ Lγ(t)−1 = β,

and since the anchor map of π : A → M is the restriction of Tβ, we see that the path
aγ is admissible.

Conversely, we see by integration that every smooth admissible path a in the Lie
algebroid A is associated to a unique smooth path γ in the Lie groupoid �, starting
from the unit γ (0) = π ◦ a(0) ∈ M and contained in the α-fibre α−1

(
γ (0)

)
.

A Lie groupoid with connected and simply connected α-fibres

We use the same assumptions as in the previous subsection. For smooth paths in �

starting from a unit in M and contained in an α-fibre, homotopy with fixed endpoints
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is an equivalence relation. The one-to-one correspondence γ �→ aγ , which asso-
ciates, to each smooth path γ in � starting from a unit and contained in an α-fibre, a
smooth admissible path aγ in the Lie algebroid A, allows us to obtain an equivalence
relation for smooth admissible paths in A. That equivalence relation will still be called
homotopy.

Let γ : I → � and γ ′ : I → � be two smooth paths in � such that, for all t ∈ I ,

γ (0) = α ◦ γ (t) = x ∈ M, γ ′(0) = α ◦ γ ′(t) = y = β ◦ γ (1) ∈ M.

We can define a path γ.γ ′ : I → � by setting

γ.γ ′(t) =
{

γ (t) for 0 ≤ t ≤ 1/2,

γ (1).γ ′(2t − 1) for 1/2 ≤ t ≤ 1.

That path starts from the unit x and is contained in the α-fibre α−1(x). By replac-
ing γ and γ ′ by homotopic paths whose derivatives vanish on a neighbourhood of
the endpoints 1 and 0, respectively, we may arrange things so that γ.γ ′ is smooth
(otherwise it is only piecewise smooth). By this means we obtain a composition law
on the space of equivalence classes (for homotopy with fixed endpoints) of smooth
paths in �, starting from a unit and contained in an α-fibre. Crainic and Fernandes
have shown [7] that this space, endowed with that composition law, is a Lie groupoid
with connected and simply connected α fibres, and that the Lie algebroid of that Lie

groupoid is π : A → M , the same as that of the Lie groupoid �
α

⇒
β

M . Moreover, they

show that that Lie groupoid is, up to an isomorphism, the unique Lie groupoid with
connected and simply connected α-fibres whose Lie algebroid is π : A → M . That
unicity property is the analogue of Lie’s firt theorem for Lie algebras and Lie groups.
It was also proved by Moerdijk and Mrc̆un [39] and by Mackenzie for transitive Lie
algebroids [33].

Weinstein groupoid of a general Lie algebroid

We no longer assume now that the Lie algebroid π : A → M is the Lie algebroid of
a Lie groupoid. We cannot use any more paths in the groupoid �, since � may not
exist, but we still can use admissible paths in the Lie algebroid A. As seen above,

when π : A → M is the Lie algebroid of the Lie groupoid �
α

⇒
β

M , homotopy with

fixed endpoints for paths in � starting from a unit and contained in an α-fibre induces
an equivalence relation, still called homotopy, on the space of admissible paths in
A. That equivalence relation can be expressed in terms involving the Lie algebroid
π : A → M only, and still makes sense when that Lie algebroid is no longer the Lie
algebroid of a Lie groupoid. That key observation allows us to consider the quotient of
the space of smooth admissible paths in A by the homotopy equivalence relation. That
quotient will be denoted by G(A). Crainic and Fernandes have shown that G(A) is
endowed with a natural topological groupoid structure, and have called it the Weinstein
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groupoid of the Lie algebroid π : A → M (the idea of that construction being due
to A. Weinstein). When that Lie algebroid is the Lie algebroid of a Lie groupoid, its
Weinstein groupoid G(A) is a Lie groupoid, and is in fact the unique Lie groupoid
with connected and simply connected α-fibres whose Lie algebroid is π : A → M .

Conversely, Crainic and Fernandes have shown that when the topological groupoid
G(A) is in fact a Lie groupoid, its Lie algebroid is isomorphic to π : A → M . The
problem of finding necessary and sufficient conditions under which π : A → M is the
Lie algebroid of a Lie groupoid amounts therefore to finding necessary and sufficient
conditions under which the Weinstein groupoid G(A) is smooth, i.e., is a Lie groupoid.
Crainic and Fernandes have solved that problem by introducing monodromy groups.

5.2 Monodromy groups

Let π : A → M be a Lie algebroid, ρ : A → T M its anchor map and G(A) its
Weinstein groupoid. For each x ∈ M , let Ax = π−1(x), ρx = ρ|Ax and gx = ker ρx .

Let u and v be two elements in gx , σu and σv two smooth sections of π : A → M

such that σu(x) = u, σv(x) = v. The Leibniz rule shows that {σu, σv}(x) depends
only on u and v, not on the sections σu and σv . This allows us to define the bracket
[u, v] by setting

[u, v] = {σu, σv}(x).

With that bracket, gx is a Lie algebra.
Let Nx(A) be the set of elements u in the center Z(gx) of the Lie algebra gx

such that the constant path t �→ u, t ∈ I = [0, 1], is equivalent (for the homotopy
equivalence relation on the space of admissible smooth paths in A defined above) to
the trivial path t �→ 0x , where 0x is the origin of the fibre Ax . Crainic and Fernandes
have shown that Nx is a group, with the usual addition as composition law, which is
at most countable, called the monodromy group at x. Let us take a Riemannian metric
on the vector bundle π : A → M , and let d be the associated distance in the fibres of
A. We set

r(x) =
{

d
(
0x, Nx(A) − {0x}

)
if Nx(A) − {0x} �= ∅,

+∞ if Nx(A) − {0x} = ∅.

We see that r(x) > 0 if and only if the monodromy group Nx(A) is discrete. We may
now state the main theorem.

Theorem 5.3 (Crainic and Fernandes [7]). The Weinstein groupoid G(A) of the Lie
algebroid π : A → M is a Lie groupoid if and only if the following two conditions
are satisfied:

(i) for all x ∈ M , the monodromy group Nx(A) is discrete, or in other words
r(x) > 0;

(ii) for all x ∈ M , we have
lim inf

y→x
r(y) > 0.
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When these conditions are satisfied, the Lie algebroid π : A → M is said to be
integrable.

The reader will find in [7] several examples of Lie algebroids for which the
monodromy groups are fully determined. There are Lie algebroids which are locally
integrable (it means that any point in the base space of the Lie algebroid has an open
neighbourhood such that when restricted to that neighbourhood, the Lie algebroid is
integrable), but not globally integrable; in other words, integrability of Lie algebroids
is not a local property. There are also Lie algebroids which are not locally integrable.

5.4 Applications and comments

Integration of a Lie algebroid by a local Lie groupoid

One may think of a local Lie groupoid as the structure defined on a smooth manifold
� by the following data: a smooth submanifold �0 ⊂ �, smooth maps α, β, a
composition law m and an inverse map ι, with the same properties as those of the
corresponding maps of a Lie groupoid, but with the restriction that these maps are
defined, and have these properties, only for elements in � close enough to the space
�0 of units. The Lie algebroid of a local Lie groupoid can be defined in the same way
as that of a true Lie groupoid. J. Pradines [42] has shown that every Lie algebroid
is the Lie algebroid of a local Lie groupoid. K. Mackenzie and P. Xu [35] have
shown that when that Lie algebroid is the cotangent bundle to a Poisson manifold,
the corresponding local Lie groupoid is a local symplectic groupoid. Crainic and
Fernandes [7, 8] have shown that these results are now easy consequences of their
general Theorem 5.3.

Some integrable Lie algebroids

By using Theorem 5.3, Crainic and Fernandes have proved the integrability of several
types of Lie algebroids. Let us indicate some of their results

A Lie algebroid with zero anchor map (i.e., a sheaf of Lie algebras) is always
integrable, and the corresponding Lie groupoid is a sheaf of Lie groups (that result
was already found by Douady and Lazard [12]).

A regular Lie algebroid (i.e., a Lie algebroid whose anchor map is of constant
rank) is locally integrable (but may be not globally integrable).

A Lie algebroid whose anchor map is injective, or more generally injective on a
dense open set, is integrable.

5.5 Symplectic realizations of a Poisson manifold

The existence of local symplectic realizations of regular Poisson manifolds (i.e., with
a Poisson structure of constant rank) was proved by Sophus Lie as early as 1890.
The problem of finding a local symplectic realization of a Poisson manifold near a
nonregular point is much more difficult. It was solved by Alan Weinstein in [48],
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where it is shown that if (P, �) is a Poisson manifold of dimension n and a ∈ P a
point where the rank of � is 2k, there exists a symplectic realization ϕ : M → U of
an open neighbourhood U of a by a symplectic manifold M of dimension 2(n − k).
Moreover, that realization is universal, in the sense that if ϕ′ : M ′ → U is another
symplectic realization of U , then dim M ′ ≥ dim M and there exist (maybe after
restriction of U and M ′) a surjective Poisson submersion χ : M ′ → M , whose fibres
are symplectic submanifolds of M ′, such that ϕ′ = ϕ ◦ χ .

By patching together symplectic realizations of open subsets of a Poisson mani-
fold, A. Weinstein proved [49, 6] that any Poisson manifold has a global, surjective
submersive symplectic realization. The same result was obtained independently by
M. Karasev [18]. Another proof of that result was given by C. Albert and P. Dazord
[1]. Weinstein and Karasev observed that such a realization automatically admits a
local symplectic groupoid structure (this means a structure with a composition law,
an inverse, source and target maps which look like those of a neighbourhood of the
submanifold of units in a symplectic groupoid), the Poisson manifold being identified
with the submanifold of units and the realization map either with the source or with
the target map. The Lie algebroid of the (local) Lie groupoid obtained in that way
can be identified with the cotangent bundle to the initially given Poisson manifold.
The problem of finding a symplectic realization of a Poisson manifold (P, �) ap-
pears therefore as closely linked to the problem of finding a Lie groupoid whose Lie
algebroid is the cotangent bundle T ∗P , with the Lie algebroid structure described in
Example 4 of 4.2.

Integrable Poisson manifolds

APoisson manifold (P, �) is said to be integrable if there exists a symplectic groupoid

�
α

⇒
β

P , with P as submanifolds of units, the Poisson structure � being that for which

α is a Poisson map and β an anti-Poisson map.
By using Theorem 5.3, Crainic and Fernandes have reinterpreted all known results

about integrability of Poisson manifolds [8]. They have shown that a Poisson manifold
(P, �) is integrable if and only if its cotangent bundle T ∗P , with the Lie algebroid
structure described in Example 4 of 4.2, is an integrable Lie algebroid. The symplectic
groupoid which integrates (P, �) can be obtained as a symplectic quotient, as shown
by Cattaneo and Felder [5]. They have shown that a Poisson manifold admits a
complete realization if and only if it is integrable.

5.6 Examples

Let us indicate the symplectic groupoids which can be associated to some examples
of Poisson manifolds.

1. Let G∗ be the dual of a finite-dimensional Lie algebra G, with its KKS-Poisson
structure. Let G be a Lie group with Lie algebra G. We can take as a symplectic
groupoid associated to G∗, the cotangent bundle T ∗G with its natural Lie algebroid
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structure (described in 3.8). By choosing G connected and simply connected, we
obtain a Lie groupoid structure on T ∗G with connected and simply connected α- and
β-fibres.

2. Let (M, ω) be a connected symplectic manifold. We can take as a symplectic
groupoid associated to M (considered as a Poisson manifold) the product manifold
M ×M , with the symplectic form p∗

1ω−p∗
2ω. We define on M ×M the pair groupoid

structure, for which the set of units is the diagonal � = {
(x, x); x ∈ M

}
, identified

with M . The target and source maps are

α(x, y) = (x, x), β(x, y) = (y, y), x and y ∈ M.

But there is a better choice for the symplectic groupoid associated to M: the funda-
mental groupoid of M , denoted by �(M). It is the set of homotopy classes (with fixed
ends) of smooth paths ϕ : [0, 1] → M . The set of units is now the set of homotopy
classes of constant paths, which can be identified with M . The target and source maps
associate, to the homotopy class ϕ̂ of a smooth path ϕ : [0, 1] → M , the homotopy
classes of the constant paths equal to ϕ(0) and to ϕ(1), respectively. We have natural
projections p1 : �(M) → M and p2 : �(M) → M , defined by p1(ϕ̂) = ϕ(0)

and p2(ϕ̂) = ϕ(1). We take as a symplectic form on �(M) p∗
1ω − p∗

2ω. The funda-
mental groupoid �(M) has, over the pair groupoid M × M , the advantage of having
connected and simply connected α- and β-fibres.

In the next section we describe a third example: the symplectic groupoid associated
to a Poisson–Lie group.

6 Double symplectic groupoid of a Poisson–Lie group

The notion of a Poisson–Lie group is due to Drinfel’d [13]. Let us recall its definition
and some properties. The reader will find more details in [32, 50].

Definition 6.1. A Poisson–Lie group is a Lie group G, equipped with a Poisson struc-
ture � such that the product

m : G × G → G, (x, y) �→ m(x, y) = xy

is a Poisson map (when G×G is equipped with the natural product Poisson structure).

6.2 Properties and examples

1. Any Lie group can be considered as a Poisson–Lie group, with the zero Poisson
structure.

2. The Poisson tensor � of a Poisson–Lie group G vanishes at the unit element e of G.
The linearized Poisson structure at that point is a skew-symmetric composition law
on T ∗

e G which satisfies the Jacobi identity. Therefore, the dual G∗ of the Lie algebra
G of G, which can be identified with T ∗

e G, has a Lie algebra structure, determined by
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the Poisson structure on G. Therefore, we have a pair of vector spaces (G, G∗), each
of these spaces being the dual of the other, both equipped with a Lie algebra structure.
The pair (G, G∗) is called a Lie bialgebra.

3. The connected and simply connected Lie group G∗ with Lie algebra G∗ is called
the dual Lie group of the Poisson–Lie group G. It also has a structure of Poisson–Lie
group �∗. When the Lie group G itself is connected and simply connected, the roles
of G and G∗ are the same, they can be exchanged (in other words, the dual Lie group
of the Poisson–Lie group (G∗, �∗) is the Poisson–Lie group (G, �)).

4. On the vector space D = G ⊕ G∗, there is a natural Lie algebra structure, of which
G and G∗ are Lie subalgebras, whose bracket is

[X1 +α1, X2 +α2] = [X1, X2]−ad∗
α2

X1 +ad∗
α1

X2 +[α1, α2]+ad∗
X1

α2 −ad∗
X2

α1,

where X1 and X2 ∈ G, α1 and α2 ∈ G∗. With that structure, D is called the double
Lie algebra of G.

5. The connected and simply connected Lie group D with Lie algebra D is called the
double Lie group of the Poisson–Lie group G. When G is assumed to be connected and
simply connected, there exist natural injective Lie group homomorphisms G → D

and G∗ → D, which will be denoted by g �→ g and u �→ u, respectively (with
g ∈ G, u ∈ G∗, g and u ∈ D).

6.3 Lu and Weinstein’s construction

Let (G, �) be a connected and simply connected Poisson–Lie group (the assumption
of simple connexity is made for simplicity, and can easily be removed). J.-H. Lu and
A. Weinstein [31] have obtained a very nice description of a symplectic groupoid
whose set of units is (G, �). We describe now that construction, with the above
defined notations. Let

� = {
(g, u, v, h) ∈ G × G∗ × G∗ × G; gu = vh

}
.

Two different structures of Lie groupoid exist on �, the first one with G as a set of
units and the second one with G∗ as a set of units. We will denote by α1, β1, m1 and ι1
the target map, the source map, the composition law and the inverse map for the first
structure, and by α2, β2, m2 and ι2 the corresponding maps for the second structure.
They are given by the following formulae:

α1 : (g, u, v, h) �→ (g, e, e, g), β1 : (g, u, v, h) �→ (h, e, e, h),

m1 : (
(g1, u1, v1, h1 = g2), (g2 = h1, u2, v2, h2) �→ (g1, u1u2, v1v2, h2),

ι1 : (g, u, v, h) �→ (h, u−1, v−1, g),

α2 : (g, u, v, h) �→ (e, v, v, e), β2 : (g, u, v, h) �→ (e, u, u, e),

m2 : (
(g1, u1 = v2, v1, h1), (g2, u2, v2 = u1, h2) �→ (g1g2, u2, v1, h1h2),
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ι2 : (g, u, v, h) �→ (g−1, v, u, h−1).

Moreover, � has a symplectic structure ω compatible with each of its two Lie groupoid
structures; in other words, with that symplectic structure, it is a symplectic groupoid
in two different ways, with either G or G∗ as a set of units. Therefore, (�, ω) is a
symplectic realization of each of the two Poisson–Lie groups (G, �) and (G∗, �∗).

7 Lie groupoid actions on a smooth manifold

We have seen that not every pair of elements in a Lie groupoid can be composed: a
pair (x, y) can be composed if and only if the image β(x), by the source map β, of the
left element x, is equal to the image α(y), by the target map α, of the right element
y. Similarly, to extend to a Lie groupoid action the well-known notion of a Lie group
action on a smooth manifold, we must observe that not every pair made of an element
in the groupoid and an element in the smooth manifold will be composable. For that
reason, we need an extra ingredient, a map from the smooth manifold into the set of
units of the goupoid, as shown in the following definition.

Definition 7.1. Let �
α

⇒
β

�0 be a Lie groupoid, M a smooth manifold and µ : M → �0

a smooth map. Let

� ×µ M = {
(x, m) ∈ � × M; β(x) = µ(m)

}
.

We assume that �×µ M is a smooth submanifold of �×M . (This is true, for example,

when µ is a submersion.) An action on the left of the Lie groupoid �
α

⇒
β

�0 on the

manifold M with moment map µ is a smooth map 	 : � ×µ M → M which satisfies
the following properties:

(i) µ
(
	(x, m)

) = α(x) for all (x, m) ∈ � ×µ M ,
(ii) 	

(
x, 	(y, m)

) = 	(xy, m) for all x and y ∈ �, m ∈ M such that (x, y) ∈ �2
and (y, m) ∈ � ×µ M ,

(iii) 	
(
µ(m), m

) = m for all m ∈ M .

A similar definition holds for an action on the right of a Lie groupoid on a smooth
manifold.

7.2 Properties and examples

1. A Lie groupoid �
α

⇒
β

�0 acts on itself on the left with moment map α, and on on

the right with moment map β.

2. A Lie groupoid �
α

⇒
β

�0 acts on both sides on the submanifold of units �0, with

moment map id�0 . These left and right actions are, respectively,
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x, u = β(x)

) �→ α(xu) = α(x) and
(
u = α(x), x

) �→ β(ux) = β(x).

3. Property (ii) of the above definition implies that the moment map µ of a left action

	 of a Lie groupoid �
α

⇒
β

�0 on a smooth manifold M satisfies, for all x ∈ � and

m ∈ M such that β(x) = µ(m),

µ
(
	(x, m)

) = α
(
xµ(m)

) = α(x).

In other words, the moment map µ is equivariant with respect to the left actions 	 of

the Lie groupoid �
α

⇒
β

�0 on M and the left action of that groupoid on its submanifold

of units �0. A similar property holds for right actions.
The following definition generalizes the notion of a symplectic (or Poisson) action

of a Lie group on a symplectic (or Poisson) manifold.

Definition 7.3. Let �
α

⇒
β

�0 be a symplectic groupoid with symplectic form ω, (M, �)

a Poisson manifold and µ : M → �0 a smooth map. Let 	 : � ×µ M → M be a

smooth action of the Lie groupoid �
α

⇒
β

�0 on the manifold M , with moment map µ.

That action is called a Poisson action if its graph{
(x, m, p) ∈ � × M × M; (x, m) ∈ � ×µ M, p = 	(x, m)

}
is a coisotropic submanifold of the product Poisson manifold � ×M ×M , where � is
equipped with the Poisson structure associated to its symplectic structure, M with the
Poisson structure � and where M means the manifold M equipped with the Poisson
structure −�.

K. Mikami andA. Weinstein [38] have developed a theory of reduction for Poisson
actions of symplectic groupoids very similar to the classical reduction theory for
symplectic actions.

The following proposition indicates an important property of the moment map
for Poisson actions.

Proposition 7.4. Let 	 : � ×µ M → M be a Poisson action of the symplectic

groupoid �
α

⇒
β

�0 on the Poisson manifold (M, �). The manifold of units �0 will be

equipped with the unique Poisson structure for which the target map α : � → �0 is
a Poisson map. Then the moment map µ : M → �0 of that action is a Poisson map.

Proof. Let s be a point in �0, θ1 and θ2 ∈ T ∗
s �0 and n ∈ µ−1(s). Let x ∈ �, m ∈ M

be such that β(x) = µ(m) and that 	(x, m) = n.
Let ξ1 and ξ2 ∈ T ∗

x �, η1 and η2 ∈ T ∗
mM and ζ1 and ζ2 ∈ T ∗

n M be such that
(ξ1, η1, ζ1) and (ξ2, η2, ζ2) belong to the annihilator of the tangent space at (x, m, n)
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to the graph of 	. Since that graph is a coisotropic submanifold of � × M × M , we
have

��(ξ1, ξ2) + �(η1, η2) − �(ζ1, ζ2) = 0.

But by using the fact that µ ◦	 = α ◦p1, where p1 : � ×µ M → � is the projection
on the first factor, we see that (α∗

xθ1, 0, −µ∗
nθ1) and (α∗

xθ2, 0, −µ∗
nθ2) belong to the

annihilator of the tangent space at (x, m, n) to the graph of 	. Therefore,

��(α∗
xθ1, α

∗
xθ2) − �(µ∗

nθ1, µ
∗
nθ2) = 0.

But since α : � → �0 is a Poisson map,

��0(θ1, θ2) = ��(α∗
xθ1, α

∗
xθ2) = �(µ∗

nθ1, µ
∗
nθ2).

That equality, which holds for all s ∈ �0, θ1 and θ2 ∈ T ∗
s �0 and x ∈ µ−1(s), proves

that µ is a Poisson map.
A shorter proof could be obtained by using the coisotropic calculus presented by

A. Weinstein in [51], which extends to Poisson manifolds the calculus of symplectic
relations initiated by W. M. Tulczyjew [46]. �

Conversely, P. Dazord [9] and P. Xu [55] have proved the following theorem.

Theorem 7.5. Let �
α

⇒
β

�0 be a local symplectic groupoid and (M, �) be a Poisson

manifold. Every Poisson map µ : M → �0 is the momentum map for a unique

local Poisson action of �
α

⇒
β

�0 on (M, �). If �
α

⇒
β

�0 is global (as a groupoid), α-

connected and α-simply connected, that action is global if and only if µ is a complete
Poisson map.

Let us explain some terms used in the above statement. The symplectic groupoid

�
α

⇒
β

�0 is said to be α-connected and α-simply connected if the α-fibres are connected

and simply connected. The moment map µ is said to be a complete Poisson map if
for every smooth function f ∈ C∞(�0, R) whose Hamiltonian vector field on �0 is
complete, the Hamiltonian vector field on M associated to the function µ∗f = f ◦µ

is complete.

7.6 Example

Let 	 : G × M → M be a Hamiltonian action (on the left) of a Lie group G on a
Poisson manifold (M, �), with an Ad∗-equivariant momentum map J : M → G∗.

Let T ∗G
α

⇒
β

G∗ be the cotangent space of G, equipped with its canonical symplectic

groupoid structure (3.8). Let

T ∗G ×J M = {
(ξ, m) ∈ T ∗G × M; β(ξ) = J (m)

}
.
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We define an action 	̂ : T ∗G×J M → M of that symplectic groupoid on the Poisson
manifold (M, �), with moment map J , by setting, for all (ξ, m) ∈ T ∗G ×J M ,

	̂(ξ, m) = 	
(
πG(ξ), m

)
,

where πG : T ∗M → M is the canonical projection. That action is a Poisson action
in the sense of Definition 7.3.

This example shows that Hamiltonian actions of Lie groups, with Ad∗-equivariant
momentum maps, appear as special cases of Poisson actions of symplectic groupoids.
By a modification of the symplectic structure on T ∗G, that result can be extended
to Hamiltonian actions whose momentum map is not Ad∗-equivariant, but rather
equivariant with respect to an affine action of G on G∗.

7.7 Poisson actions of Poisson–Lie groups

Let (G, �G) be a Poisson–Lie group and (P, �P ) a Poisson manifold. An action on
the left 	 : G × P → P of the Lie group G on the manifold P is called a Poisson
action if its graph {

(g, m, p) ∈ G × M × M; p = 	(g, m)
}

is a coisotropic submanifold of the product Poisson manifold G × M × M , where M

is the manifold M equipped with the Poisson structure −�.
J.-H. Lu [30] has defined the notion of a momentum map for such an action. It

is a map J : P → G∗, with values in the dual Poisson–Lie group G∗, such that, for
each X in the Lie algebra G of G,

XP = �
�
P (J ∗Xr),

where Xr is the right-invariant 1-form on G∗ whose value at the unit element is X ∈ G

(the vector space G being identified with the dual of TeG
∗, itself identified with G∗).

A momentum map in the sense of Lu is a Poisson map.
Along lines similar to those followed in 7.6, a Poisson–Lie group action on a

Poisson manifold, with a momentum map in the sense of Lu, can be lifted to a
Poisson action of the symplectic groupoid of G∗.

8 Poisson groupoids

Poisson groupoids were introduced by A. Weinstein [51] as a generalization of both
symplectic groupoids and Poisson–Lie groups.

Definition 8.1. A Poisson groupoid is a Lie groupoid�
α

⇒
β

�0, with a Poisson structure

� on �, such that the graph of the product{
(x, y, z) ∈ � × � × �; (x, y) ∈ �2, z = xy

}
is a coisotropic submanifold of the product Poisson manifold � × � × �, where � is
the manifold � with the Poisson structure −�.
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8.2 Properties and examples

1. A symplectic groupoid is a Poisson groupoid whose Poisson structure is nondegen-
erate (i.e., symplectic).

2. A Poisson–Lie group is a Poisson groupoid whose groupoid structure is that of a
Lie group (i.e., whose submanifold of units is reduced to one point).

3. As for a symplectic groupoid, the submanifold of units �0 of a Poisson groupoid

�
α

⇒
β

�0 has a unique Poisson structure for which the maps α and β are, respectively,

a Poisson and a anti-Poisson map.

4. The Lie algebroidπ : A(�) → �0 of a Poisson groupoid has an additional structure:
its dual bundle � : A(�)∗ → �0 also has a Lie algebroid structure, compatible in
a certain sense (indicated below) with that of π : A(�) → �0 (K. Mackenzie and
P. Xu [34], Y. Kosmann-Schwarzbach [20], Z.-J. Liu and P. Xu [29]).

The compatibility condition between the two Lie algebroid structures on the two
vector bundles in duality π : A → M and � : A∗ → M can be written as follows:

d∗[X, Y ] = L(X)d∗Y − L(Y )d∗X,

where X and Y are two sections of π , or, using the generalized Schouten bracket
(Property 2 of 4.3) of sections of exterior powers of the Lie algebroid π : A → M ,

d∗[X, Y ] = [d∗X, Y ] + [X, d∗Y ].
In these formulae d∗ is the generalized exterior derivative, which acts on the space of
sections of exterior powers of the bundle π : A → M , considered as the dual bundle
of the Lie algebroid � : A∗ → M , defined in Property 3 of 4.3.

These conditions are equivalent to the similar conditions obtained by exchange
of the roles of A and A∗.

When the Poisson groupoid �
α

⇒
β

�0 is a symplectic groupoid, we have seen (4.5)

that its Lie algebroid is the cotangent bundle π�0 : T ∗�0 → �0 to the Poisson
manifold �0 (equipped with the Poisson structure for which α is a Poisson map). The
dual bundle is the tangent bundle τ�0 : T �0 → �0, with its natural Lie algebroid
structure defined in Property 2 of 4.2.

5. Conversely, K. Mackenzie and P. Xu [35] have shown that if the Lie algebroid of a
Lie groupoid is a Lie bialgebroid (that means, if there exists on the dual vector bundle
of that Lie algebroid a compatible structure of Lie algebroid, in the above defined
sense), that Lie groupoid has a Poisson structure for which it is a Poisson groupoid.

More information about Poisson groupoids can be found in [57].

9 Other developments

Poisson geometry, symplectic and Poisson groupoids and their generalizations, are
currently very active fields of research, and several aspects could not be discussed here.
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Let us quote the works of S. Bates and A. Weinstein [3] on geometric quantization,
of J. Huebschmann [15] and P. Xu [56] on Poisson cohomology, of J.-C. Marrero
and D. Iglesias [16, 17] on Lie groupoids associated to Jacobi structures [28], of
M. Bangoura and Y. Kosmann-Schwarzbach [2, 20] on the dynamical Yang–Baxter
equation and Gerstenhaber algebras, of P. Libermann [24, 25] on contact groupoids
and Lie algebroids. We refer to the excellent review papers of Alan Weinstein [53, 54]
for a much more extensive survey and other references.

Acknowledgments The author thanks the referee, who suggested important improvements upon
the first version of that paper, and Ann Kostant for her patient help.
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