Charles-Michel Marle

POISSON MANTIFOLDS IN MECHANTCS

1. INTRODUCTION

Poisson structures were defined and studied by Lichnerowicw
(1976, 1977), who recognized their importance in mechanics
and mathematical physics. Under the name of Hamiltonian
structures, several other authors gave various definitions
of Poisson structures, equivalent to the definition used by
Lichnerowicz: among others, we refer to Tacob and Sternberg
(1979), Kuperschmidt and Manin (1977), Symes (1980 a and b).
Poisson structures are in fact a particular case of local
Lie algebras, studied by Kirillov (197L, 1976). In this
introduction, we will indicate some of the reasons which
account for the growing importance of Poisson structures in
mechanics.

1.1. Poisson manifolds as reduced phase spaces of Hamiltonian

systems

Classically (Abraham and Marsden, 1978, Arnold, 197Lk), a
Hamiltonian mechanical system is mathematically described by
a symplectic manifold (M,Q), called the phase space of the
system, and a differentiable function H : M -~ R, called the
Hamiltonianh of the system. The time evolution of the system
is described by integral curves of the Hamiltonian vector
field #dH, defined by the property

i(#AH)Q = - aH

Let G be a Lie group of symmetries of the system, that means,
a Lie group which acts on the manifold M, by an action which
preserves the symplectic 2-form 2 and the Hamiltonian H; for
all g € G, we have

*
gf2=0 3 gH=0,g=1

Let us assume that the set P of orbits of the G-action on M
has a differentiable manifold structure, such that the
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canonical projection m: M > P is a submersion. The manifold

P is called the reduced phase space of the system. It can be
shown that the Hamiltonian vector field #dH projects onto M.
For studying motions of the system, one may first look at
integral curves of the projected vector field, on the reduced
phase space P. But in general P is no more a symplectic
manifold: it is a Poisson manifold.

A classical example of such a situation is the Euler-Poinsot
motion of a rigid body with a fixed p01nt (Arnold, 197L):
phase space is the cotangent bundle T™(30(3)) to the rotation
group S0(3); the Hamiltonian H is a left-invariant Riemannian
metric H on the group S0(3), which may be defined by a sym-
metric map I: % g , called the inerty operator, here § is
the Lie algebra of the rotation group, and % its dual space.
The reduced phase space is g*, and the projection on %

the Hamiltonian vector field #dH, leads to the Euler dlffe—
rential equation:

au *
—— D - e
s adI 1(”)“ s heg) ,

* .. .
where ad stands for the coadjoint representation of %.

Poisson structures on reduced phase spaces may also be en—
countered in more general situations, for instance when such
a reduced phase space is the set of leaves of a foliation of
a symplectic manifold, instead of the space of orbits of a
Tie group action; see Proposition 2.10 and Example 2.11 in
the following.

1.2. Poisson manifolds a spaces of values of momentum maps

As in 1.1, let (M,Q,H) be a classical Hamiltonian system,
and G a Lie group which acts on M by a Hamiltonian action;
for each g € G, we have:

and moreover, there exists a differentiable map J: M - %*,
such that for all X € @

i(XM)Q = - 4<J , X

Here G is the Lie algebra of G, % its dual space, and Xy
the vector field on M defined by:
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_a
XM(X) = % exp( tX).X|t=O s (x € M).
The map J was first defined by Souriau (1969), and is called
the momentum of the G-action. Souriau has shown that there

. . X ok
exists an affine action of G on 5 :

a : G x %* > gﬁ
alg,g) = Ad’;a + 0(g)

(where 6: G 9—@; is a symplectic l1-cocycle of G), for which
the map J is equivariant. Moreover, there exists on a
Poisson structure, called the modified Xirillov-Kostant-
Souriau structure associated with the symplectic cocycle 9,
for which J is a Poisson morphism (see example 2.3, 3°, and
definition 2.8 below).

The Hamiltonian H is no more assumed G-invariant, but we
assume that it may be written as:

A
H=H,J ,

A

where H : %* + R is some differentiable function. Then it
can be shown that the Hamiltonian vector field #dH on the
symplectic manifold M, ané the Hamiltonian vector field #dH
on the Poisson manifold § , (def. 2.6 below), are J-related.

An example of such a situation is the Euler-Lagrange motion
of a rigid body in a gravity field, with a fixed point on its
revolution axis. The phase space is ™ (50(3)), just as for
the Euler-Poinsot motion. But the Lie group G used now is the
group of displacements of a three-dimensional Euclidean space,
30(3) x R3 (semi-direct product). See for instance Iacob

and Sternberg (1979).

1.3. Remark

The two ways by which Poisson structures appear, described in
1.1 and 1.2, are related by the following fact: under suitable
assumptions, the set of values of the momentum map J appears
as the set of leaves of the generalized foliation of the
manifold M defined by the symplectic ‘orthogonal of the set

of subspaces tangent to orbits of the G-action. This property
seems closely related to example 2.11 given below.
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1.4, Poisson and canonical manifolds

For the mathematical description of Hamiltonian mechanical
systems with time—dependent Hamiltonians and constraints,
Lichnerowicz (1976, 1979) has defined and studied canonical
manifolds, which are Poisson manifolds with an additionnal
structure. For more details on this subjJect, the reader is
referred to the papers of Iichnerowicz quoted above, and to
Marle (1982).

1.5. Poisson manifolds and completely integrable systems

A considerable interest was raised up recently by completely
integrable Hamiltonian systems: see the works of Lax (1968),
Adler (1979), Adler and Van Moerbeke (1980, a and b), Iacob
and Sternberg (1979), Kazhdan, Kostant and Sternberg (1978),
Kostant (1979), Mischenko and Fomenko (1978), Moser (1975),
Olshanetsky and Perelomov (1976, 1979), Ratiu (1980), Reyman
and Semenov-Tian-Shansky (1979, 1981), Symes (1980, a and Db);
see also the conference of Verdier (1980) at the Séminaire
Bourbaki. In these works, Polsson structures appear; they are
mainly of Kirillov-Kostant-Souriau type, and defined on dual
spaces of Lie algebras. As will be seen in paragraph 5 below,
some of the involution theorems obtained in these works may
be put under a simpler and more general Torm, by the use of
general Poisson structures.

2. POISSON MANTFOLDS: ELEMENTARY PROPERTIES AND EXAMPLES

2.1. Definition

A Poisson structure on a differential manifold M, is defined
by a bilinear map
00

(

CM,R) x C(M,R) » C (M,R) ,

called Poisson bracket, and noted : (f,g) » {f,g}, satisfying
the following properties:
i) the Poisson bracket is skew-symmetric:

{g:f} = - {fag} H

ii) it is a derivation in each of its arguments
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{fog,g} = {f1,g}f2 + f1{f2,g} ;
{f,g.8,0 = {f.eg te, + g {fhg)
iii) it satisfies the Jacobi identity
{r,{g,n}} + {g,{n,r}} + {n,{r,g}} =0

With such a structure, the manifold M is called a Poisson
manifold.

2.2. Remark

The space Cm(M,}?) of differentiable functions on a Poisson
manifold M, is endowed with two algebraic structures:

an associative algebra structure, defined by the ordinary
product (f,g) » fg ;

a ILie algebra structure, defined by the Poisson bracket
(£,g) » {£,8} .

These two structures are related by the property ii) of
definition 2.1, which may be put under the following form :
fgr any £ € C°(M,R ), let adp be the linear endomorphism of
¢ (M,R)

gw ad.(g) = {f,g} ;

T
then, ade is a derivation of the associative algebra structure
defined by the ordinary product.

A real vector space with an associative algebra structure and
a Lie algebra structure related in such a way, will be called
a Poisson algebra. Many properties of Poisson manifolds are
in fact properties of the corresponding Poisson algebra, and
remain valid for any Poisson algebra. This idea is developed
by Ouzilou (1981).

2.3. Examples

1°) Tet (M,R) be a symplectic manifold. The 2-form Q
defines an isomorphism :

(#) TM > M ;

.- * . .
by definition, for all x € M, a € T, M, #o is the unique vector
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of TXM such that
i(#a) Q= -«

The Poisson bracket associated with the symplectic structure
on M, is the bilinear map from CT(M,R ) X C (M,R) into
C (M,R)

(f,g) v {f,g} = #ar.g = - #ag.r = Q(#ar , #ag)

One may check that this Polsson bracket satisfies the proper-
ties of Definition 2.1. This shows that any symplectic mani-
fold has an underlying Poisson structure.

2°) Let % be a real, finite dimensional Lie algebra; the
byacket of two elements X and Y of G will be noted [X,Y]. Let
G be the dual space of @. For all f and g € Cw(% ,R), and
all x € M, we set

{r,e}(x) = <x , Lar(x) , dg(x) 1>

One may check that this Poisson bracket satisfies the proper-
ties of Definition 2.1. This proves that the dual space §

of a real, finite dimensional Lie algebra G, has a natural
Poisson structure. This structure was defined by A. Kirillov
(1974), B. Kostant (1970), and J.-M. Souriau (1969).

3°) With the same hypotheses and notations as in the last
example, let © : % X @ > R be a skew-symmetric bilinear
ﬁmmon%,sudlﬂmt,fm?aM_X,Yamize %:

(*) ©(x , [Y,z]) +O(y , [Z,Xx]) +0(z , [X,Y]) =0
We will say that © is a symplectic 2-cocycle of % (with
values in R), or, when ® is looked at as a linear map from

into its gual space @r, a symplectic 1-cocycle of § with
values in g -

For all f and g € o § , R) and x € M, we set
{f,g}®(x) = <x , [df(x) , dg(x)]> - ©(df(x) , dg(x))
One may check again that this Poisson bracket satisfies the

properties of Definition 2.1. The corresponding Poisson
structure on § will be called the modified Kirillov-Kostant-
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Sourisu structure associated with the symplectic cocycle ©.
When © = 0 , it reduces to the Kirillov-Kostant-Souriau
structure defined in the preceding example.

2.4. Proposition

Let M be a Poisson manifold. There exists on M a unique two
times contravariant, skew-symmetric tensor field A such that,
for all f and g € C°(M , R) :

(*) {f,g} = Alaf , dg)
The tensor field A is called the Poisson tensor field of M.

Proof. The defining property (*) shows that A is unique. For
proving its existence, it is sufficient to check that for
all f and g € ¢C®(M , R) and all x € N, {f,g}(x) depends
only on df(x) and dg(x). But this results from property ii)
in Definition 2.1.

2.5. Remark

Let A be a two times contravariant, skew-symmetric tensor
field on a manifold M. The formula (*) in Proposition 2.k
defines a bilinear map (f,g)+ {f,g} , from c®(M,R) x (M, R)
into C°(M,R) . This map satisfies properties i) and ii) of
Definition 2.1, but in general it does not satisfy property
jii). Lichnerowicz (1977) has shown that this map satisfies
property iii), if and only if the tensor field A is such that:

(*% ) (A, A)=0 ,

the bracket in this formula being the Schouten bracket,
(Schouten 1954),

This shows that a Poisson structure on a manifold may be
defined by a two times contravariant, skew-symmetric tensor
field A, which satisfies property (**) above. This is the
definition of Poisson structures initially introduced by
Lichnerowicz (1977); it is equivalent to Definition 2.1.

2.6 Definition

Tet M be a Poisson manifold, and A its Poisson tensor field.
We will note (#) the morphism, from the cotangent bundle
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T M into the tangent bundle TM, which associates with any
x € M and a e T <M, the unique vector #uy € T <M such that, for
all B &€ TM:

<B , #a> = A (o, B)
Let £ € C®(M , R). The vector field #3df will be called
the Hamiltonian vector field with Hamiltonian function f. It
is characterized by the fact that, for any g € (M , R) :

#ar . g = {f,g}
2.7. Proposition
Let M be a Poisson manifold. The map
f v #ar

is a Lie algebra homomorphism of C*(M , R) (with the Lie
algebra structure defined by the Poisson bracket), into the
space BM) of C* vector fields on M (with the Lie algebra
structure defined by the usual brackeb).
Proof. We must check that, for all f and g € C®(M , R) :

#a{r,g} = [#ar , #dg]
But for any third element h of C°(M , R), we have

{{f,g} E) h} {f 2 {gah}} - {g E) {f:h}}

#af. (#dg.h) - #dg.(#ar.n) = [#af , #dgl. n

1]
]

#a{f,g}.h

2.8. Definition
Let M and N be two Poisson manifolds. A differentiable map
¢ : M> N is called a Poisson morphism if it is such that,
for all f and g € ¢C°(N , R) :
* _ [k *
o {f,g} = {¢7r , ¢"g}

The following proposition indicates a usuful property of
Poisson morphisms.
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2.9. Proposition
Let M and N be two Poisson manifolds, and ¢:M » N a Poisson
morphism. Then for any f € C*(N,R) , the pair of Hemiltonian
vector fields #d(fop) on M, and #Aaf on N, is compatible with
the map ¢ ; this means that , for all x € M :
T g (#a(200) (x)) = #arle (x))

Proof. Let g be another element of Cw(N,}U . We have:

<dgle(x)), T¢(#d(fep)(x))> = <dlgop)(x) , #a(fop ) (x)>

{foe , gov}(x)

{o*r , o*g}(x)

e*{f,g}(x) = {f,g}(e(x))

<dgle(x) , #af(e(x))>

2.10. Proposition

Let M be a Poisson manifold, and ¢ : M ~> N be a surjective
submersion of M onto a differentiable manifold N. The two
following properties are equivalent.

1. For all f and g € C°(M,R) , the function {fge , gov}
is constant on any fiber of the fibration ¢ : M > N

2. There exists a Poisson structure on N such that ¢ is a
Poisson morphism.

When these two equivalent properties are satisfied, the
Poisson structure on N for which ¢ is a Poisson morphism is
unique.
Proof. As ¢ is a surjective submersion, the map:

o oXf = £
is a vector space isomorphism of ¢®(N,R) onto the vector

subspace of C®(M,R) of functions which are constant on each
fiber of the fibration ¢ : M =+ N. This shows that Property 2
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implies Property 1. Conversely, i1f we assume Property 1 satis-
fied, we can define the Poisson bracket {f,g} of two functions
f and g € C°(N,R) as the unique function on N such that:

{f:-g}OSD = {fo‘P s go‘p}

We can check that properties of Definition 2.7 are satisfied.
At last the unigueness of the Poisson structure on N for
which ¢ is a Poisson morphism, is a consequence of Definition

2.8.

2.11. Example

This example is due to P. Libermann (1982). Let (M,Q) be a
symplectic manifold. We first recall some definitions and
notations (see Tor instance Abraham and Marsden, 1978). If
X 1s a point of M and F_ a vector subspace of the tangent
space T, M, the symplectic orthogonal of Fx is the vector
subspace of TXM :

orth F_ = {v e T M P Q(x)(v,w) = 0 for all w € FX}

The vector space FX is said coisotropic (resp. isotropic,
resp. Lagrangian) ~1if orth Fy, € Fy (resp. if Fy C orth Fy,
resp. if Ty = orth Fy).

Similarly, let F be a vector subbundle of TM. The symplectic
orthogonal orth F of F is the vector subbundle of TM, whose
fiber, at each point x of TM, is the symplectic orthogonal
orth Fy of the fiber F, of F at point x. The vector subbundle
F is sald coisotropic (resp. isotropic, resp. Lagrangian) if
orth F € F (resp. if F C orth F , resp. if F = orth F).

We now consider the Poisson structure on M underlying its
symplectic structure (example 2.3, 1°). Let ¢ : M > N be a
surjective submersion of M onto a differentiable manifold N
such that, for each x € N, ¢~ 1(x) is connected. The kernel
ker(Ty) of the fibre bundle map T¢ : TM > TN is a completely
integrable vector subbundle of TM, and the manifold N may be
looked at as the manifold of leaves of the foliation of M
defined by ker(Ty). Then the two equivalent properties of
Proposition 2.10 are satisfied if and only if the vector
subbundle orth(ker(T¢)) of T is completely integrable. This
property follows from the Frobenius theorem, and from
Proposition 2.7.
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In particular, when ker(Ty¢) is a coisotropic subbundle of TM,
it can be shown that orth(ker(Tv)) is completely integrable;
therefore in that case, the two eguivalent properties of
Proposition 2.10 are satisfied.

2.12. Remark

Under the hypotheses of the last example, let A be the Poisson
tensor field of N, defining the Poisson structure on N for
which ¢ : M+ N is a Poisson morphism. Let x be a point of
N, and 2p the rank of A at point x. Then it can be seen that
the rank of the 2-form induced on the submanifold ¢-1(X)

by the symplectic 2-form Q, is constant, equal to 2(p+m-n),
where 2m is the dimension of M, and n the dimension of N.

3. CHARACTERISTIC FIELD AND INTEGRAL MANIFOLDS OF A
POTSSON STRUCTURE

In this paragraph M is a Poisson manifold, and A its Polsson
tengor field. For simplicity, in the following definitions
and propositions, all functions, differential forms and
vector fields considered are defined on the whole manifold

M. The reader will check easily that the results can be
extended to the case when these functions, differential forms
or vector fields, are defined on open subsets of the manifold
M.

3.1. Definitions

1°) A function £ € ¢”(M,R) is an invariant of the Polsson
structure if it is an element of the center of the Lie algebra,
that means, if for all g € ¢7(M,R ), one has

{r,g} =0

2°) The characteristic field of the Poisson structure is
the subset & of the tangent bundle TM, image of the fibre
bundle morphism (#) : T*M - TM.

3°) An integral manifold of the Poisson structure is a
connected, immersed submanifold N of M such that, for all x € N:

TN=5& s
X X
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where F% is the fiber at point x of the characteristic field
&.

3.2. Remarks

1°) A function f € C®(M,R) is an invariant of the Poisson
structure if and only if its differential af is a section of
the annihilator &° of &, that means, if and only if, for each
x € M, df(x) belongs to the vector subspace of T*M of linear
forms on T M which vanish on the vector subspace F}.

2°) For each x € M, the fiber J' of the characteristic
field at p01nt x , is a vector subspace of T,M , whose
dimension is equal to the rank of the skew—symmetrlc two
times contravariant tensor Alx). But in general, the dimension
of r depends on the point x € M; for this reason, ¥ is not
always a vector subbundle of TM.

3.3. Proposition

Let o and B be two Pfaff forms on M, of class c”. There exists
a Pfaff form vy on M, of class ™ , such that:

LFo , #B1 = #y

Proof. The use of a partition of unity enables us to treat
the problem locally, in the domain U of a chart of the mani-
fold M. Let x1, ... x™ be the local coordinates associated
with this chart. The Pfaff forms o and B may be written
locally as:

where oy and Bj are C° functions defined on U. We have:
m .
#o= ) o, #axt ; #B = Z B #dXJ ;
1=1 J=1

therefore:
m m . .
[#o , #81 = ) ) [la. #ax' , B. #ax’]
i=1 j=1 * J

or, using well known formulas about the bracket
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m m . .
[#a , #R] = Z E ( o. B. T#dx" , #ax? ]
i=1 j=1 d

+ oy <dB; #ax> #ax?

- Bj <do; , #dx‘j> #dxi )
By using Proposition 2.7, we have:
M, #axdl = #alt L 20},
and we have:
[#o ,#3) = #y ,

where:
TOT il ioooyad i yad
v = iz1 qu (@iBjd{X ,x° ) + ui(#dx .Bj)dx - Bj(#dx .ai)dx ).

The last proposition shows that the space of sections of F
which are images, by the fibre bundle morphism (#), of c®
Pfaff forms on M, is invariant by the bracket operation.

This property loocks like the Frobenius condition, for the
complete integrability of a vector subbundle of the tangent
Pundle. But the classical Frobenius theorem is not applicable
here, because #1is not a vector subbundle of TM. However,

we have the following result, due to A. Kirillov (1976):

3.4, Theorem

Let x be any point of the Poisson manifold M. There exists a
unique maximal integral manifold Ny of the Poisson structure
containing the point x. Any other integral manifold of the
Poisson structure which contains x, is a connected, open
submanifold of N . Moreover, Ny has a unique symplectic
structure, whose symplectic 2-form is defined by the following
property, valid for all f and g € C”(M,R) and all y € N :

(*) Oy 1y) (#ar(y) , #dg(y)) = {f,e}(y)
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Finally, the manifold M is partitioned into maximal integral
manifolds of its Poisson structure, which are symplectic
connected immersed submanifolds of M (in general, not all of
the same dimension).

Proof. We will first prove the existence of a local integral
manifold N of the Poisson structure containing x. Let 2p be
the dimension of ?%. If p = 0, the result is true, because
Ny = {x}. We assume now p > 0; therefore, there exists a
function £ € C°(M,R) such that #d4f(x) # 0. By integration
along integral curves of #df, we can define, on an open
neighbourhood U of x, a differentiable function g such that:

#dr.g =1 ,
or, according to the very definition of #af:
{f,g} =1
By Proposition 2.7, we have on U:
[#ar , #dgl = 0
Moreover, the vector fields #df and #dg are linearly inde-
pendent at each point of U: if a and b are two scalars and
y a point of U such that:
a #af(y) + b #dg(y) =0 ,
we have:

#a(af + bg)(y)

It
(@)
-

and:

11

{af + bg , -bf + agl}(y)

= a2 + b2 5

0 = #d(af + bg).(-bf + ag) (y)

which shows that a =1 =0
By restricting eventually U, we may assume that there exists
a surjective submersion:

0o + U~>W
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of U onto a manifold W, whose dimension is dim M - 2, such
that each leaf of the foliation of U defined by #df and #dg
is the inverse image by ¥ of a point of W. Let hq and hy be
two differentiable functions defined on U, which are constant
on each fiber of the fibration ¢ : U > W. We have:

#df.hi =0 #dg.hi =0 , (i=1or2);

#df.{h1,h2} = {f , {h1,h2}} #dh1.(#df.h ) - #dhz.(#df.h1)

2
= 0 R

and similarly:
#dg.{h1,h2} =0

This shows that {h,,h.} is constant on each fiber of the
fibration ¢ : U - &. %y Proposition 2.10, we see that there
exists on W a unique Poisson structure for which e : U~>W
is a Poisson morphism. The rank of the Poisson tensor field
Ay at point ¢(x), is equal to 2(p-1). If p~1 =0, e~ e (x))
is an integral manifold of the Poisson structure containing
x; the rank of the Poisson tensor field A is constant along
integral curves of the vector fields #df and #dg, because
the integral flows of these vector fields are one-parameter
local groups of Poisson morphisms; therefore the rank of A is
constant along ¢ M@ (x)), and equal to 2, that means, equal
to the dimension of this manifold. This shows that ¢~ Mo (x))
satisfies the condition defining integral manifolds of the
Poisson structure.

Now if p-1 > 0, replacing M by W, we can repeat the same
argument as above. After a finite number of steps, we can
assert the existence of a 2p-dimensional integral manifold

W of the Poisson structure, containing the point x.

If N' is another 2p-dimensional integral manifold of the
Poisson structure containing x, we see that N N N' is open
in N and in N'. This shows the local uniqueness of N. Then
the existence and uniqueness of a maximal integral manifold
of the Poisson structure containing x, 1s proved by the same
procedure as in the case of a foliation of M (Chevalley 1946).
At last, we check that the 2-form QN defined on Ny by the
formula (*) above, is of class C*j it is non degenerate by
the very definition of ¥, and closed because we have, if T,
g and h are three differentiable functions, and y a point

of Ny:
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a (#af , #3g , #an)(y) = S (#ar.Q (#ag , #an))(y)
x (f,g,h) X
- Qo ([#ar , #agl , . #an)(y)
(f,é,h) T '
= {r , {g,n}}(y)
(f,g,h)
- ES {{f,g} , h}(y)
(f,g,n)
= 0 R

by 2.7 and the Jacobi identity. The symbol E; in the
formulae above stands for a sum over | (f,g,h)
the three circular permutations of (f,g,h).

3.5. Examples.

1°) In example 2.3, 1°, when (M,0) is a symplectic mani-
fold, we have & = TM ; therefore the maximal integral mani-
folds of the Poisson structure are the connected components
of M. More generally, when for all x € M, the dimension of
@% is an even integer 2p which does not depend on x, ¥ is a
completely integrable vector subbundle of TM, whose rank is
2p. The maximal integral manifolds of the Poisson structure
are the leaves of the foliation of M defined by §: they are
symplectic manifolds, all of the same dimension 2p. In that
case, one can prove a version of Darboux theorem (Lichnerowicsz
1977, Symes 1980): every point of M has an ogen neighbourhood,
domain of a chart with local coordinates x', . xgp, xeptt,
... ¥, such that the expression of the Poisson bracket of
two functions f and g is

(rg) = § (2L %8 2f s,
i=1 9x Tt axT axt axF Tt
2°) We consider now example 2.3, 2°, when M is the dual
space of a real, finite dimensional Lie algebra 5. Let G Dbe
a connected Lie group having § as Lie algebra. An¥ element
X of % may be locked at as a linear function on . The
corresponding Hamiltonian vector fie%d #dX on must
satisfy, for all Y € § and all x € g (the second equality
below being a consequence of the very definition of the
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coadjoint representation X ® ady of the Lie algebra ) ):

*
<#ax(x) , ¥> =<x , [X,Y]> = <-ady x , V>

* . ..
Let vy H'AdY and Yy v Ad (with Y € G) be the adjoint
and coadjoint representations of the Lie group G. We recall
that, for all Y€ G, x € G, ¥ € G :
*
<Ad_ x , Y> =<x , Ad__q Y>
Y Y

and that, for all X€G, x€ G, ve€§

dpg* = ad
at “exp(tX) xlpog = ady % ’
a

— Ad

at Texp(tX) Y]t=O L%,

We can see now that the maximal integral mapnifold Ny of the
Poisson structure containing a point x of 1s the orbit
through x of the coadjoint representation of G :

*
N = f{ad x | vy €a}
x Y

3°) With the same notations as above, we consider now*the
case of example 2.3, 3°, when the Poisson structure on @
the modified Kirillov—-Kostant—-Souriau Poisson structure,
associated with a symplectic cocycle ©. Tt can be shown that
there exists a unique differentiable map O : G ~ % , which
has the two properties

i) for all vy, and Y, € G, one has

6lv,v,) = ad 6(y,) +06(yv,)

Y 2
ii) if T : G > is the linear map tangent to © at
the neutral element e of G, one has for all X and Y € § :

1
*

<Tee(x) , Y>> = O(X,Y)

We will say that 0 is a s¥mplectic 1-cocycle of the Lie
group G, with values in , associated with the symplectic
cocycle @ of the Lie algebra %.

Associated with 8, there ex1sts an affine action ag of the
Iie group G on the dual space % of its Lie algebra, whose



64 C.-M. MARLE

linear part is the coadjoint action, defined by
* *
ag(Y,x) = A4 x + 6(Y) (yea, x€§)

By the same procedure as in case 2° above, we can now see

that the maximal integral manifold N, of the Poisson structure
containing a point x of % , 1s the orblt through x of the
affine action ag

NX={Ad;x+9(y)IYEG}

3.6. Remark (Symes 1980)

Under the hypotheses of examples 2.3, 3°, and 3.5, 3%, we
consider the cotangent bundle T G. The dlfferentlal do  of
the Liouville 1-form o, is a symplectic 2-form on T™G. The
symplectic cocycle ® may be looked at as a left invariant
differential 2-form on the Lie group G, and the formula (%)
of example 2.3, 3°, shows that this 2-form is closed. Let

*
Q® =doa + g © .
where g : T G + G 1s the canonical prOJectlon One can
check that Q@ is a symplectic 2-form on ™G,

Let ¢ : T¥G +-%* be the map which associates, to each
element z of T G, the left invariant 1-form whose value at
p01nt q(z) € G, is z. We see that ¢ is a surjective submer-—
sion, and that, for all & € % , 0~'(&) is the graph of the
left invariant 1-form £. We are now under conditions of
example 2.11: zhe modified Kirillov-Kostant-Souriau Poisson
structure on associated with the symplectic cocycle ©, is
the unigue Polsson structure on g for which ¢ : T G % G

is a Poisson morphism (when the Poisson structure on ™G is
the structure associated with the symplectic structure
defined by Og)-

The above remark applies to examples 2.3, 2° and 3.5, 2° ,
by making © =

3.7. Remark

A differentiable function f defined on a Poisson manifold M
ig an invariant of the Poisson structure (definition 3.1),
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if and only if f is constant on each maximal integral manifold
of the Poisson structure.

. AUTOMORPHTISMS AND INFINTTESIMAL AUTOMORPHISMS OF A
POISSON STRUCTURE

Tn this paragraph M is a Poisson manifold, and A its Poisson
tensor field.

I 1. Definition

1°) A Poisson automorphism of M is a diffeomorphism
¢ : M - M, which is also a Poisson morphism.

2°) An infinitesimal Poisson automorphism of M is a vector
field X on M, whose integral flow ¢ is such that, for any
t € R, ¢ 1s a Poisson morphism (from the open subset of M
on which ¢, is defined, onto its image).

We can check that when ¢ and ¢! are Poisson automorphisms of
M, ¢_1 and ¢' o ¢ are Poisson automorphisms of M : the set
of Poisson automorphisms of M is a subgroup of the group of

diffeomorphisms of M.

4,2, Examples

1°) Tet (M,Q) be a symplectic manifold; we lock at M as a
Poisson manifold, for the underlying Poisson structure. A
diffeomorphism ¢ : M > M is a Poisson automorphism if and
only if ¢ is a symplectomorphism of M, that means, if and
only if

Under the same hypotheses, a vector Tield X on M is a
Poigson infinitesimal automorphism, if and only if X is a
locally Hamiltonian vector field on M (see for instance
Abraham and Marsden, 1978), that means, if and only if the
differential 1-form i(X)Q is closed.

2°) Under the hypotheses of examples 2.3,3°, and 3.5, 3°,
let Y be an element of the Lie group G. The affine transform

of % :
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*
x »—¢Y(X> = ag(y,x) = Ad, x 6(v)

is a goigson automorphism of %*. We have indeed, for f and
g€C(§ , R)
* * * *
{¢Yf > wyg}@(X) = <x , [d(¢Yf)(X> , d wyg)(X)]>
* *
- G(d(¢Yf)(x) , d(wyg)(x))

<« , [aq df(¢y(x)) » Ad g dg(¢y(x))]>
- @(Ady_1 df(wY(x)) > Ay dg(wy(x)))
*

<AdY x + 6(y) , [df(¢y(X)) , dg(wY<X))]>
- &

df(¢Y(X)) , dg(wY<X)>)

*
¢ {f,g} (x)
v '8
In the above calculation we have used the property, valid
for any y €§ :

<y, d(w’;f)(x» <Adf{ v s dtle, ())>

< Ad__. af(e_(x))>

T By Y

We have also used the property which relates the cocycles 9§
of the Lie group G, and © of the Lie algebra §, valid for
any X and Y € 3, and any v € G :

It

<0(y) , [X,Y]> = O(X,Y) - G(AdY_1 X, Ad - Y)

Lh.3. Proposition

Let X be a vector field on the Poisson manifold M. The three
following properties are equivalent.

(o]
1°) For all f and g € ¢ (M , R) , we have
X.{f,g} = {x.£, g} + {r , X.g}

2%) The Iie derivative of the Poisson tensor field A, with
respect to the vector field X, vanishes
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L(X)A =0

3°) The vector field X is a Poisson infinitesimal auto-
morphism.

Proof. Bguivalence of properties 1° and 2° is easy. In order
to prove the equivalence of these two properties with proper-—
ty 3°, we remark that if ¢ is the integral flow of X, we

have for all t, € R:

* *
. (X.{wt f o, wtog})

* {*f *}l _ *
o, Lot ety = -v_
© * © % *
+o (X0 £) , o¥ g})
£ t

4
t

t
* O

£, %0} e)})
¢] O ¢}

It is then easy to see that properties 2° and 3° are equi-
valent.

The last proposition shows in particular that the set of
infinitesimal automorphisms of the Poisson manifold M, is a
Lie subalgebra of the Lie algebra of differentiable vector
fields on M.

L.h. Example

Let £ € C (M , R) be a function on the Poisson manifold M.
The associated Hamiltonian vector field #d4f (definition 2.6)
is a Poisson infinitesimal automorphism of M. We have indeed,
for all g and h € ¢C®(M , R) :

#3r.{g,ht = {f , {g,h}}

{{r,g} , n} + {g , {£,n}}

{#af.g , n} + {g , #df.n}

The following definition generalizes the definitions of
locally and globally Hamiltonian vector fields (Abraham and
Marsden, 1978), which are well known for a symplectic
manifold. We will see that, on a Poisson manifold, locally
Hamiltonian vector fields are infinitesimal automorphisms of
the Poisson structure; but infinitesimal Poisson automorphisms
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may exist, which are not locally Hamiltonian vector fields.
k.5, Definitions

1°) A differential p—form N on the Poisson manifold M is
said F-closed if, for any family (fq, ... fp+1) of p+1
differentiable functions on M, one has

dn(#df1, - #dfp+1) =0

2°) A vector field X on the Poisson manifold M is said
locally Hamiltonian if there exists an F-closed Pfaff form
o on M, such that

X = #a

Any closed 1-form (and, therefore, the differential 4f of
any differentiable function f on M) is F-closed. Hence a
Hamiltonlan vector field #df on M, is locally Hamiltonian.

4.6. Proposition

Let o be a Pfaff form on the Poigson manifold M. The vector
field #o is an infinitesimal Poisson automorphism if and only
if o is T-closed, that means, if and only if #u is locally
Hamiltonian.

Proof. Let f and g be two elements of Cm(M,EQ). We have

#o.{f,g} = - <a, #i{f,g}>
= - <q, [#af , #dgl> ;
#Fo.t , g} = {A(a,af) , g}
= - {<o , #dif> , g}
= #dg. (<o , #d>) ;
{r , #o.g} = - #df. (<0 , #dg>)

We obtain:

#a.{f,g} - {#o.f , g} - {f , #u.g} = dal(#dr , #dg) ,
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and the result follows from this equality .

b.7. Proposition

Let X and Y be two vector fields on the Poisson manifold M.
1°) If X is an infinitesimal Poisson automorphism and Y a

locally Hamiltonian vector field, the bracket [X,Y] is locally

Hamiltonian; more precisely, if B is an F-closed Pfaff form
such that

one has
[x,Y] = #(£(X)B)
2°) If X and Y are both locally Hamiltonian, the bracket
[X,Y] is a Hamiltonian vector field; more precisely, if o
and B are two F-closed Pfaff forms such that
X = #o , Y=4#8 ,

one has

[X,Y] = #3(i(X)B) = - #d(i(Y)o)
Proof. Let B be an 5-closed Pfaff form such that

Y = #B .

For any function £ € C"(M,R) , we have

X (Y.f) - Y. (X.£)

[X,Y].f

X.(A(B,af)) - A(B , 4(X.T))

AE(X)B , af)
because the Lie derivative L(X)A of the Poisson tensor field
A vanishes (progosition 4.3). Therefore we have, for any

function f € C (M,R) :

[X,Y1.f = #(LX)B).f
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and this shows that
[X,Y] = #84X)B

But as X and Y are infinitesimal Poisson automorphisms, their
bracket [X,Y] i1s also an infinitesimal Poisson automorphism;
by proposition 4.6, we see that L(X)B is F-closed, or that
[X,Y] is locally Hamiltonian. This completes the proof of 1°.
Under the hypotheses of 2°, by using the formula

L(x)g = a i(xX)B + i(x) ag ,
we obtain :

[X,Y] = #a(i(x)B) + #(i(X) am)

But for any function f € C*(M,R), we have

#(1i(x) ag).f = A(i(x) aB , 4af)

dp(#ar , X)
=0

The last equality is due to the facts that B is §F-closed,
and that, X being locally Hamiltonian, for any point x € M,
there exists a differentiable function h on M such that

X(x) = #dn(x)
Therefore we have
[X,Y] = #4(i(xX)B)
which completes the proof of 2°.

The reader is referred to the paper of Lichnerowicz (1977) -
for a much more thorough study of the various Lie algebras

of vector fields associated with a Poisson manifold, of their
derivations, ideals and deformations. Results indicated above
are, for their main part, adapted from the corresponding
results established by Lichnerowicz in the particular case
when the rank of the Poisson tensor field A is constant.
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5. FUNCTIONS IN INVOLUTION ON A POISSON MANIFOLD
5.1. Definition

Let M be a Poisson manifold. Two functions f and g € C7(M,R)
are sald in involution when

{f,g} =0

The corresponding definition is well known for functions
defined on a symplectic manifold. The importance of this
concept is related to the classical Liouville theorem (Arnold,
1974, Arnold and Avez, 1967) about completely integrable
Hamiltonian systems.

Following the work of Lax (1968) about isospectral deforma-
tions, several recent works were devoted to completely inte-
grable Hamiltonian systems : see the papers referred to in
the introduction, paragraph 1.5. In these works appear
theorems which give conditions under which functions are in
involution (see in particular the paper of T. Ratiu, 1980).
Some of these theorems may be put under a simpler and more
general form, when the concept of Poisson manifold is used.
This is the case for the Adler-Kostant-Symes theorem, which
may be formulated as follows.

5.2. Theorem (M. Selmi, 1982, and the author)

Let M and N be two Poisson manifolds, and ¢ : M > N a
Poisson morphism, which is also a surjective submersion. Let
s : U+ M be a section of ¢, that means, a differentiable
map from an open subset U of N, into M, such that ¢ o s 1is
the identity map of U. We assume that the submanifold s(U)
of M gatisfies the following property:

Property P : for any pair (h,k) of differentiable functions
on M, whose restrictions to s(U) are constant, the Poisson
bracket {h,k} vanishes on s(U).

(o)
Then if f and g € ¢ (M,R) are two invariants of the Poisson
structure of M (definition 3.1), the two functions f , s and

g o s, defined on the open subset U of N, are in involution:

{fosag05}=o
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Proof. We set

U1 = s(U)
Tet x be a point of U, and y = s(x) the corresponding point
of Uq. We have the direct sum decomposition :
TM=TU, ®ker Ty
¥ vyl ¥
By duality, we ded&ce the direct sum decomposition of the
cotangent space TyM :
o 0
®
)u e (LU
where (ker T ¢)° and (T,U;)° are the annihilators, respec-
tively, of er T, and of TyU1 (that means, the vector
subspaces of the cotangent space TyM, made of linear forms
on T M which vanish, respectively, on ker T,¢ and on T U1).
The two subspaces (ker T ¢)° and (T U1)0 may be identl-
fied, respect}vely, with {he dual spaces TyU1 of TyU1 .
and (ker T.¢) of ker Ty . We note

*
TM= (ker T o
y y

y v
U > (ker T ¢)° = TU
’!T,I : y er y(ﬂ = y 1 s
Y o *
T, : TM~> (TU = (ker T g)
2 y y 1) v

the two projections defined by this direct sum decomposition.
Let Ay be the Poisson tensor field on M. We have

{fos,80sHx)s= AM(W1(df(y)) , m,(dely))
because ¢ : M~ N is a Poisson morphism. We may write
{fos , gosl}(x) = AM(df(y) -
<dgly) - my(agly)) , #af(y)>

ﬂg(df(y)) , dgly) - ﬂg(dg(y)))

+ <n2(df(y)) , #dgly)>

+ Ay (ag(y)) 5 my(dely)))

But the first two terms of this last expression vanish,
because as T and g are Poisson invariants, #df(y) and #dg(y)
are egual to zerc. On the other hand, ﬁg(df(y)) and
ng(dg(y)) belong to (TyU1)o ; there exist two Tunctions
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h and k, constant on U such that

1,

an(y) = m (af(y)) dk(y)=ﬂ2(dg(y)) R

T
and we have, by Property P
A (af(y)) , m(de(y))) = {h,k}(y) =0

Finally we have

{f o8 ,8,sHx)=0

5.3. Remark

When M is a symplectic manifold, property P of theorem 5.2
means that s(U) is a coisotropic submanifold of M. When M
is a Poisson manifold, it seems that submanifolds of M which
verify Property P play a part very similar to- that of coiso-
tropic submanifolds of a symplectic manifold.

5.4, Application

We give here the usual form of the Adler-Kostant-Symes theorem
and we will show how it can be deduced from theorem 5.2.

Let G be a real, finite dimensional Lie algebra, . and % two
Lie subalgebras of % such that we have the direct sum vector
space decomposition

%:'@L@%

* . .
We have, for the dual space % , the corresponding direct sum
decomposition

G =R e#& ,
where
RO=®  ; 40=%

On the spaces * and &X, we consider the Kirillov-Kostant-
Souriau Poisson structures. Let A € 8 be such that

() <D, > =0
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(%) <X, [R,%> =0
. * . . .
Let f and g be two functions on , Which are invariants of
its Poisson gtructure. We note ) and g) the two functions
defined on g by
*
fk(X) = f(x + A) s (x € % ) s
*
g,(x) =gx+)  , (x€g)

We note i : &X E‘ﬁ? - 8* the canonical injJection.

Then the two functions f) o, i and gy o i , defined on the
Poisson manifold A, are in involution

{fxoiag)\oi}=o
In order to deduce this result from theorem 5.2, we take
* *

M= % 5 N=f = ﬁg

We define ¢ : M >N , and s : N >M , by
*

ely) =ny -2 , y€§g) ,

s(x) =x + A , xef®)
where T4 : %r =£° o 0 > &7 is the first projection.
Using the property (*) above, we can check that ¢ is a Poisson
morphism. Similarly, using the property (**), we see that
the property P of theorem 5.2 is satisfied by the affine
submanifold s(f°) of the Poisson manifold § . We can apply

theorem 5.2, and we obtain the result indicated above.
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