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ON HENRI POINCARÉ’S NOTE
“SUR UNE FORME NOUVELLE DES ÉQUATIONS DE LA MÉ-
CANIQUE”
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Abstract. We present in modern language the contents of the famous note pub-

lished by Henri Poincaré in 1901 “Sur une forme nouvelle des équations de la Mé-

canique”, in which he proves that, when a Lie algebra acts locally transitively on

the configuration space of a Lagrangian mechanical system, the well known Euler-

Lagrange equations are equivalent to a new system of differential equations defined

on the product of the configuration space with the Lie algebra. We write these

equations, called the Euler-Poincaré equations, under an intrinsic form, without

any reference to a particular system of local coordinates, and prove that they can

be conveniently expressed in terms of the Legendre and momentum maps. We dis-

cuss the use of the Euler-Poincaré equation for reduction (a procedure sometimes

called Lagrangian reduction by modern authors), and compare this procedure with

the well known Hamiltonian reduction procedure (formulated in modern terms in

1974 by J.E. Marsden and A. Weinstein). We explain how a break of symmetry in

the phase space produces the appearance of a semi-direct product of groups.

In memory of Jean-Marie Souriau, founder of the modern theory of Geometrical

Mechanics, with respect and admiration

1. Introduction

On the 19th of February 1901, Henri Poincaré published a short note [17] entitled

“Sur une forme nouvelle des équations de la Mécanique” in which he considers a

Lagrangian mechanical system with a configuration space on which a Lie algebra

acts locally transitively (it means that there exists on the configuration space a Lie

algebra of vector fields such that, at each point, the values of these vector fields

completely fill the tangent space). Poincaré proves that the equations of motion

can be written as differential equations living on the product of the configuration

space with the Lie algebra, rather than on the tangent bundle to the configuration

space. Of course, these equations are equivalent to the well known Euler-Lagrange

equations, as was shown by Poincaré himself in his note, but they are written in
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terms of different variables. More recently, several scientists working in the field

called “Geometric Mechanics”, used the equations obtained by Poincaré (which

they called “Euler-Poincaré equations”) to solve various problems. Following a

remark made by Poincaré at the end of his note, several authors observed that these

equations become very simple when the Lagrangian L is such that its value L(v)
at a vector v tangent to the configuration space at a point x, only depends on the

element of the Lie algebra of vector fields which, at the point x, takes the value v.

Modern authors sometimes call “Lagrangian reduction” [2–10, 18] the use of that

property to make easier the determination of motions of the system.

Assumptions made in these recent papers and books seem to us very often more re-

strictive than those made by Poincaré himself; for example, several modern authors

assume that the mechanical system under study has a Lie group as configuration

space, and that its dynamics is described by a Lagrangian invariant under the lift

to the tangent bundle of the action of this group on itself by translations either on

the right or on the left. It seemed to us useful to go back to the original source,

Poincaré’s note, to see whether some ideas of Poincaré were not overlooked by

modern authors.

The contents of Poincaré’s note are described in modern language in Section 2. The

equation1 derived in this note, which will be called the Euler-Poincaré equation, is

written both in local coordinates, as was done by Poincaré, and under an intrinsic

geometric form with no reference to any particular system of coordinates. In Sec-

tion 3, following a remark made by Poincaré at the end of his note, we show that

Euler-Lagrange equations and the Euler equations for the motion of a rigid body

with a fixed point can be considered as special cases of the Euler-Poincaré equa-

tion. In Section 4 we prove that the Euler-Poincaré equation can be expressed in

terms of the Legendre map and the momentum map of the lift to the cotangent bun-

dle of the Lie algebra action on the configuration space. At the end of this Section

we also discuss a simple example (the spherical pendulum) in which the dimension

of the Lie algebra of vector fields is strictly larger that the dimension of the configu-

ration space of the system. The procedure sometimes called Lagrangian reduction

by modern authors, which amounts, when the Lagrangian possesses some sym-

metry properties, to use the Euler-Poincaré equation in order to solve successively

two differential equations defined on smaller dimensional spaces instead of a sin-

gle differential equation on a higher dimensional space, is discussed in Section 5.

At the end of this Section, a simple example is used to show that when the dimen-

sion of the Lie algebra is strictly larger than the dimension of the configuration

1We will write “Equation” rather than “Equations” for a differential equation, considered as a

single mathematical object even when it lives on a manifold whose dimension may be larger than 1,

and therefore may appear, when written in local coordinates, as a system of several equations.
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space, very serious obstructions limit the applicability of Lagrangian reduction. In

Section 6 and in all that follows, the Lagrangian is assumed to be hyperregular and

we discuss the Euler-Poincaré equation in Hamiltonian formalism. The reduction

procedure in Hamiltonian formalism is more fully discussed in Section 7. In Sec-

tion 8 we assume that the configuration space of the system is a Lie group, and we

fully discuss the Lagrangian reduction procedure and its relations with the better

known Marsden-Weinstein reduction procedure. Finally in Section 9 we explain

how a break of symmetry in the cotangent bundle to the configuration space can

lead to the appearance of an extended action of a semi-direct product of groups.

2. Poincaré’s Note

2.1. Derivation of the Euler-Poincaré equation.

Poincaré considers a Lagrangian mechanical system whose configuration space is

a smooth manifold Q. The Lagrangian is a smooth real valued function L defined

on the tangent bundle TQ. To each parametrized continuous, piecewise smooth

curve γ : [t0, t1] → Q, defined on a closed interval [t0, t1], with values in Q, one

associates the value at γ of the action integral I

I(γ) =

∫ t1

t0

L

(
dγ(t)

dt

)
dt .

The equation of motion of the Lagrangian system is obtained by writing that the

parametrized curve γ is an extremal of I , for variations of γ with fixed endpoints.

Poincaré assumes that a finite dimensional Lie algebra g acts on the configuration

manifold Q. In other words, he assumes that there exists a smooth Lie algebras ho-

momorphism ψ of g into the Lie algebraA1(Q) of smooth vector fields onQ. More

exactly, Poincaré’s considerations being local, he only assumes that for each point

a ofQ, there exists a neighbourhood Ua of that point and a smooth Lie algebras ho-

momorphism ψa of the Lie algebra g into the Lie algebra A1(Ua) of smooth vector

fields on Ua. For simplicity we will assume that the Lie algebras homomorphism

ψ takes its value into the Lie algebra A1(Q) of smooth vector fields everywhere

defined on Q. Since the purpose of Poincaré’s note is to obtain local expressions of

the equation of motion, the more general case when the homomorphisms ψa take

their values into the space of vector fields on open subsets Ua of Q is easily treated

by replacing Q by Ua.

For each X ∈ g, we will say that ψ(X) is the fundamental vector field on Q
associated to X. In order to shorten the notations, we will write XQ for ψ(X).
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Poincaré assumes that ψ is locally transitive, i.e., that for each x ∈ Q, the set of

values taken by XQ(x), for all X ∈ g, is the whole tangent space TxQ. In other

words, Poincaré assumes that the vector bundles homomorphism, defined on the

trivial vector bundle Q× g, with values in the tangent bundle TQ,

ϕ(x,X) = XQ(x) , with x ∈ Q , X ∈ g ,

is surjective. We will see that its transpose ϕt : T ∗Q → Q × g
∗, which is an in-

jective vector bundles homomorphism of the cotangent bundle T ∗Q into the trivial

bundle Q× g
∗, where g

∗ is the dual space of the vector space g, is closely related

to the momentum map defined by J.-M. Souriau [19].

Poincaré’s assumptions are satisfied, for example, when there exists a locally tran-

sitive action Φ : G × Q → Q on the manifold Q of a Lie group G whose Lie

algebra is g.

For a given parametrized continuous, piecewise smooth curve γ : [t0, t1] → Q,

any parametrized piecewise continuous and smooth curve γ : [t0, t1] → Q × g

which, for each t ∈ [t0, t1] at which γ is smooth, satifies

ϕ
(
γ(t)

)
=
dγ(t)

dt
(1)

will be said to be a lift of γ to Q× g.

Let

pQ : Q× g → Q and pg : Q× g → g

be the canonical projections of the product Q× g onto its two factors. Obviously

(1) implies

pQ ◦ γ = γ .

Therefore any lift γ toQ×g of a continuous, piecewise smooth parametrized curve

γ : [t0, t1] → g can be written

γ = (γ, V ) ,

where V = pg◦γ : [t0, t1] → g is a piecewise continuous and smooth parametrized

curve which satifies

dγ(t)

dt
= V (t) for each t ∈ [t0, t1] at which γ is smooth. (2)

Any parametrized continuous, piecewise differentiable curve γ : [t0, t1] → Q
always has a lift to Q× g. But such a lift may not be unique. Let us set indeed

r = dim g , n = dimQ ,
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and for each x ∈ Q, let

gx =
{
X ∈ g ;XQ(x) = 0

}

be the isotropy Lie algebra of x. When r > n, dim gx = r − n > 0. If a curve

γ = (γ, V ) is a lift of γ, any other curve γ ′ = (γ, V ′) such that (V ′−V )(t) ∈ gγ(t)

for each t ∈ [t0, t1] at which γ is smooth is another lift of γ.

Conversely, a piecewise continuous and smooth curve γ : [t0, t1] → Q× g is a lift

to Q× g of a parametrized continuous, piecewise smooth curve γ : [t0, t1] → Q if

and only if its first component pQ◦γ is almost everywhere equal to γ and its second

component V = pg ◦ γ satisfies condition (2) above. A piecewise continuous

and smooth curve γ = (γ, V ) : [t0, t1] → Q × g whose first component γ is

continuous and whose second component V satisfies condition (2) above will be

said to be admissible. Any admissible curve γ = (γ, V ) is a lift to Q×g of its first

component γ.

Let L : Q× g → R be the function

L = L ◦ ϕ : (x,X) 7→ L
(
XQ(x)

)
, x ∈ Q , X ∈ g ,

and let I be the functional, defined on the space of of parametrized piecewise

continuous curves γ : [t0, t1] → Q× g,

I(γ) =

∫ t1

t0

L ◦ γ(t) dt .

If γ : [t0, t1] → Q is a parametrized continuous, piecewise differentiable curve in

Q, and γ : [t0, t1] → Q× g any lift of γ to Q× g, we have

I(γ) = I(γ) .

Therefore looking for continuous, piecewise smooth maps γ : [t0, t1] → Q at

which I is stationary amounts to look for admissible curves γ : [t0, t1] → Q × g

at which I restricted to the space of admissible curves in Q× g is stationary. The

equation so obtained will be, of course, equivalent to the Euler-Lagrange equation,

but will be expressed differently, with different variables.

In order to write that the parametrized continuous and piecewise smooth curve γ :
[t0, t1] → Q is an extremal of I , Poincaré considers a variation with fixed endpoints

of that curve, i.e., a continuous and piecewise smooth map (t, s) 7→ γs(t), defined

on the product of intervals [t0, t1]× [−ε, ε], with values in Q, such that

γ0(t) = γ(t) for each t ∈ [t0, t1] ,

γs(t0) = γ(t0) and dγs(t1) = γ(t1) for each s ∈ [−ε, ε] .
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There exists a (non unique) piecewise continuous and smooth map (t, s) 7→ γs(t),
defined on the product of intervals [t0, t1] × [−ε, ε], with values in Q × g, such

that for each s ∈ [−ε, ε], γs is a lift of γs to Q × g. In other words, the map

(t, s) 7→ γ(t, s) is such that for each t ∈ [t0, t1] and each s ∈ [−ε, ε],

γs(t) =
(
γs(t), Vs(t)

)
, with Vs(t) ∈ g ,

and, for each (t, s) at which the map (t, s) 7→ γs(t) is smooth

(
Vs(t)

)
Q

(
γs(t)

)
=

dγs(t)

dt
. (3)

The parametrized curve γ is an extremal of I if and only if, for any variarion

(t, s) 7→ γs(t) with fixed endpoints of γ, we have

dI(γs)

ds

∣∣∣
s=0

= 0 .

Poincaré uses the fact that, for each s ∈ [−ε, ε]

I(γs) = I(γs) , which implies
dI(γs)

ds

∣∣∣
s=0

=
dI(γs)

ds

∣∣∣
s=0

.

Therefore he can write

dI(s)

ds

∣∣∣
s=0

=
d

ds

(∫ t1

t0

L
(
γs(t), Vs(t)

)
dt

) ∣∣∣∣∣
s=0

.

In local coordinates, the function L : Q×g → R is expressed as a functions of n+r
real variables: the n local coordinates (x1, . . . , xn) of x ∈ Q (for a given chart of

Q) and the r components (X1, . . . ,Xr) of X ∈ g in a given basis (X1, . . . ,Xr)
of g. Therefore

dI(s)

ds

∣∣∣
s=0

=

∫ t1

t0

[
n∑

i=1

∂L(γs(t), Vs(t))

∂xi
∂γis(t)

∂s

+

r∑

k=1

∂L(γs(t), Vs(t))

∂Xk

∂V k
s (t)

∂s

] ∣∣∣∣∣
s=0

dt .

We set
∂γis(t)

∂s

∣∣∣
s=0

= δγi(t) ,
∂V k

s (t)

∂s

∣∣∣
s=0

= δV k(t) ,

so we may write

dI(s)

ds

∣∣∣
s=0

=

∫ t1

t0

[
n∑

i=1

∂L
(
γ(t), V (t)

)

∂xi
δγi(t) +

r∑

k=1

∂L
(
γ(t), V (t)

)

∂Xk
δV k(t)

]
dt.
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For each t, the δγi(t) are the component of a vector δγ(t) ∈ Tγ(t)Q and the δV k(t)
the components of a vector δV (t) ∈ TV (t)g, canonically isomorphic to g. Let

d1L : Q × g → T ∗Q and d2L : Q × g → g
∗ be the partial differentials of the

function L : Q× g → R with respect to its first and its second variable. The above

equality can be written more concisely as

dI(s)

ds

∣∣∣
s=0

=

∫ t1

t0

[〈
d1L

(
γ(t), V (t)

)
, δγ(t)

〉
+
〈
d2L

(
γ(t), V (t)

)
, δV (t)

〉]
dt .

Since δγ(t) ∈ Tγ(t)Q, there exists an element2 δω(t) ∈ g (non unique when r > n)

such that

δγ(t) = ϕ
(
γ(t), δω(t)

)
=
(
δω(t)

)
Q

(
γ(t)

)
.

We may impose δω(t0) = δω(t1) = 0 since δγ(t) vanishes for t = t0 and t = t1.

Replacing δγ(t) by its expression in terms of δω(t), we may write

〈
d1L

(
γ(t), V (t)

)
, δγ(t)

〉
=
〈
pg∗ ◦ ϕ

t ◦ d1L
(
γ(t), V (t)

)
, δω(t)

〉
,

where pg∗ : Q × g
∗ → g

∗ is the canonical projection on the second factor and

ϕt : T ∗Q → Q× g
∗ the injective vector bundles homomorphism transpose of the

surjective vector bundle homomorphism ϕ : Q× g → TQ. Poincaré denotes by Ω
the map

Ω = pg∗ ◦ ϕ
t ◦ d1L : Q× g → g

∗ .

The expressions of its components in the basis of g∗ dual of the basis (X1, . . . ,Xr)
of g are

Ωk(x,X) =

n∑

i=1

∂L(x,X)

∂xi
(
Xk

)i
Q
(x) .

The expression of the derivative of I(γs) with respect to s, for s = 0, becomes

dI(s)

ds

∣∣∣
s=0

=

∫ t1

t0

[〈
Ω
(
γ(t), V (t)

)
, δω(t)

〉
+
〈
d2L

(
γ(t), V (t)

)
, δV (t)

〉]
dt .

Then Poincaré writes, without further explanation, “Or on trouve aisément

δV i(t) =
d
(
δωi(t)

)

dt
+

(r,r)∑

(s,k)=(1,1)

ciskV
k(t)δωs(t) . ”

2Here our notations differ slightly from those of Poincaré, who writes ω(t) where we write δω(t).
We used the symbol δ to indicate that δω(t) is an infinitesimal quantity.
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The cisk are the stucture constants of the Lie algebra g in the basis (X1, . . . ,Xr).
Poincaré probably obtained that result by taking the derivative with respect to s of

both sides of equality (3) above, then by setting s = 0. Indeed, this led us to

(
d
(
δω(t)

)

dt
− δV (t)

)

Q

(
γ(t)

)
=
[(
δω(t)

)
Q
,
(
V (t)

)
Q

](
γ(t)

)
.

Since ψ : g → A1(Q), X 7→ ψ(X) = (X)Q, is a Lie algebras homomorphism,

[(
δω(t)

)
Q
,
(
V (t)

)
Q

]
=
([
δω(t), V (t)

])
Q
,

so we obtain

(
d
(
δω(t)

)

dt
− δV (t)−

[
δω(t), V (t)

]
)

Q

(
γ(t)

)
= 0 .

Therefore, for each t ∈ [t0, t1],

d
(
δω(t)

)

dt
− δV (t)−

[
δω(t), V (t)

]
∈ gγ(t) .

Since δV (t) is determined only up to addition of a map [t0, t1] → g which, for

each t ∈ [t0, t1], takes it value in the isotropy Lie algebra gγ(t), we can choose

δV (t) =
d
(
δω(t)

)

dt
−
[
δω(t), V (t)

]
,

which is the result written in local coordinates by Poincaré. Replacing δV (t) by

its expression, we obtain

dI(s)

ds

∣∣∣
s=0

=

∫ t1

t0

[〈
Ω
(
γ(t), V (t)

)
, δω(t)

〉

+
〈
d2L

(
γ(t), V (t)

)
,
d
(
δω(t)

)

dt
−
[
δω(t), V (t)

]〉]
dt .

We transform the second term of the right hand side by writing

〈
d2L

(
γ(t), V (t)

)
,
d
(
δω(t)

)

dt

〉
=

d

dt

〈
d2L

(
γ(t), V (t)

)
, δω(t)

〉

−
〈 d

dt

(
d2L

(
γ(t), V (t)

))
, δω(t)

〉
,
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therefore by integration

∫ t1

t0

〈
d2L

(
γ(t), V (t)

)
,
d
(
δω(t)

)

dt

〉
dt =

〈
d2L

(
γ(t), V (t)

)
, δω(t)

〉 ∣∣∣
t=t1

t=t0

−

∫ t1

t0

〈 d

dt

(
d2L

(
γ(t), V (t)

))
, δω(t)

〉
dt

= −

∫ t1

t0

〈 d

dt

(
d2L

(
γ(t), V (t)

))
, δω(t)

〉
dt

since δω(t0) = δω(t1) = 0. Similarly

〈
d2L

(
γ(t), V (t)

)
,−
[
δω(t), V (t)

]〉
=
〈
d2L

(
γ(t), V (t)

)
, adV (t)

(
δω(t)

)〉

= −
〈
ad∗V (t)

(
d2L

(
γ(t), V (t)

))
, δω(t)

〉
.

For each V ∈ g we have denoted by adV : g → g the Lie algebras homomorphism

adV (X) = [V,X] = −[X,V ] ,

and by ad∗V : g∗ → g
∗ the opposite of the transpose of adV , so that

〈ξ, adV X〉 = −〈ad∗V ξ,X〉 , ξ ∈ g
∗ , V and X ∈ g .

Finally we obtain

dI(s)

ds

∣∣∣
s=0

=

∫ t1

t0

[〈
Ω
(
γ(t), V (t)

)

−

(
d

dt
− ad∗V (t)

)(
d2L

(
γ(t), V (t)

))
, δω(t)

〉]
dt .

Since δω(t) can be chosen arbitrarily with the only restriction of vanishing at the

end points, γ is an extremal of I if and only if

(
d

dt
− ad∗V (t)

)(
d2L

(
γ(t), V (t)

))
= Ω

(
γ(t), V (t)

)
, (E-P1)

with

Ω = pg∗ ◦ ϕ
t ◦ d1L .

It is the intrinsic expression (independent of any choice of local coordinates) of

the Euler-Poincaré equation. In his note, Poincaré writes it, in local coordinates,
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under the form

d

dt

(
∂L
(
γ(t), V (t)

)

∂Xi

)
=Ωi

(
γ(t), V (t)

)

+

(r,r)∑

(k,s)=(1,1)

ckisV
s(t)

∂L
(
γ(t), V (t)

)

∂Xk
.

Of course, together with the Euler-Poincaré equation, we must consider the com-

patibility condition
dγ(t)

dt
= ϕ

(
γ(t), V (t)) . (CC)

2.2. Comments made by Poincaré.

At the end of his note, Poincaré briefly indicates that the Ωi

(
γ(t), V (t)

)
can be

interpreted as the components of forces exerted on the system. About his equation,

which in local coordinates appears as a system of several equations, he indicates

that they contain, as special cases, the well known Euler-Lagrange equations and

the Euler equations governing the motion of a rigid body. Finally he writes “Elles

sont surtout intéressantes dans le cas où U étant nul, T ne dépend que des η”.

He denoted by T the kinetic energy expressed as a function defined on Q × g

rather than on TQ, and by U the potential energy, defined on Q. The function

denoted by T − U by Poincaré is therefore L in our notations, and the variable η
on which T depends is, in our notations, the second variable X on which depends

L. We see therefore that Poincaré writes that his equation is useful mainly when

L : Q× g → R only depends on its second variable X ∈ g. This last remark made

by Poincaré is the origin of the procedure called Lagrangian reduction by modern

authors, discussed in in Section 5.

3. Two Special Cases of the Euler-Poincaré Equation

3.1. Euler-Lagrange equation.

In the domain of a chart with local coordinates x1, . . . , xn, the configuration space

Q can be identified with an open subset of Rn. The Lie algebra g is the Abelian

Lie algebra R
n, coordinates X1, . . . ,Xn, with the zero bracket. The Lie algebras

homomorphism ψ is the linear map

ψ(Xi) =
∂

∂xi
, 1 ≤ i ≤ n .
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The vector bundle isomorphism ϕ : Q× g → TQ is given by

ϕ(x,Xi) =

(
∂

∂xi

)
(x) , 1 ≤ i ≤ n .

Let L : TQ → R be the Lagrangian. In local coordinates, the expression of

L = L ◦ ϕ is the same as that of L:

L(x1, . . . , xn,X1, . . . ,Xn) = L(x1, . . . , xn,X1, . . . ,Xn) .

Since for each x ∈ R
n ϕx : g → TxQ is expressed as the identity map, its transpose

ϕt
x : T ∗

xQ → g
∗ too is expressed as the identity map. The coadjoint action ad∗

is identically zero since the Lie algebra g is Abelian. The Euler-Poincaré equation

becomes
d

dt

(
d2L

(
γ(t), V (t)

))
= d1L

(
γ(t), V (t)

)
.

We recognize the well known Euler-Lagrange equation.

3.2. Euler Equation for the Motion of a Rigid Body.

In this section the reference frame considered is that in which the Earth is at rest.

As a first approximation we consider it as Galilean, the centrifugal force due to the

Earth rotation exerted on a material body being included in its weight (the gravity

force exerted by the Earth on that body) and the Coriolis force being neglected. We

study in that reference frame the motion of a material rigid body with at least three

distinct non collinear material points. We assume that units of time and of length,

an origin of time and an orientation of space have been chosen. The physical space

and the physical time can then be mathematically represented by an Euclidean

three dimensional oriented affine space E and by the real line R, respectively. A

configuration of the body in space is represented by an affine, isometric, orientation

preserving map, defined on an abstract Euclidean three dimensional oriented affine

space S (called the space of material points), with values in E. For each z ∈ S
representing some material point of the body, the position of that material point in

space, when the configuration of the body in space is represented a map x : S →
E, is x(z).

We assume, for simplicity, that a given point OS of the material body is con-

strained, by an ideal constraint, to remain at a fixed position OE in physical space.

By choosing OS andOE as origins, respectively of S and E, we can consider these

spaces as vector spaces. The set Q of all possible positions of the material body in

space is therefore the set Isom(S,E) of linear, orientation preserving isometries of

S onto E.
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Let GS and GE be the Lie groups (both isomorphic to SO(3)) of linear automor-

phisms of the oriented Euclidean vector spaces S and E, respectively, gS and gE

their Lie algebras. The groups GS and GE both act on Q, respectively on the right

and on the left, by two commuting, transitive and free actions ΦS and ΦE , given

by the formulae, where x ∈ Q = Isom(S,E), gS ∈ GS , gE ∈ GE ,

ΦS(x, gS) = x ◦ gS , ΦE(gE , x) = gE ◦ x .

The values at x ∈ Q of the fundamental vector fields on Q associated to XS ∈ gS

and Y E ∈ gE are

XS
Q(x) =

d
(
x ◦ exp(sXS)

)

ds

∣∣∣
s=0

, Y E
Q (x) =

d(exp(sY E) ◦ x)

ds

∣∣∣
s=0

.

The maps ψS : gS → A1(Q),XS 7→ XS
Q, and ψE : gE → A1(Q), Y E 7→ Y E

Q , are

Lie algebras homomorphisms. However, one should be careful with signs: since

ΦS is an action of GS on the right, the bracket of elements in the Lie algebra gS

must be the bracket of left-invariant vector fields on the Lie group GS ; similarly,

since ΦE is an action of GE on the left, the bracket of elements in the Lie algebra

gE must be the bracket of right-invariant vector fields on the Lie group GE .

The maps ϕS : Q× gS → TQ and ϕE : Q× gE → TQ, defined by

ϕS(x,X
S) = XS

Q(x) , ϕE(x, Y
E) = Y E

Q (x) , x ∈ Q , XS ∈ gS , Y
E ∈ gE

are vector bundles isomorphisms.

A motion of the rigid body during a time interval [t0, t1] is mathematically de-

scribed by a smooth parametrized curve γ : [t0, t1] → Q. For each time t ∈ [t0, t1],
there exists a unique ΩS(t) ∈ gS and a unique ΩE(t) ∈ gE such that

ϕS

(
γ(t),ΩS(t)

)
=
dγ(t)

dt
, ϕE

(
γ(t),ΩE(t)

)
=
dγ(t)

dt
.

In his beautiful paper [1], Vladimir Arnold clearly explained their physical inter-

pretation:
dγ(t)

dt
∈ Tγ(t)Q is the true angular velocity of the body, ΩS(t) is the

angular velocity of the body seen by an observer bound to the moving body and

moving with it, and ΩE(t) is the angular velocity of the body seen by an observer

bound to the Galilean reference frame in which the motion is studied and at rest

with respect to that reference frame.

The kinetic energy of the body is

T

(
dγ(t)

dt

)
=

1

2
I
(
ΩS(t),ΩS(t)

)
,
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where I : gS × gS → R is a symmetric, positive definite bilinear form which

describes the inertia properties of the body. It does not depend on time nor on the

configuration γ(t) of the body. We denote by I♭ : gS → g
∗
S the linear map

〈
I♭(XS), Y S

〉
= I(XS , Y S) , XS and Y S ∈ gS .

The potential enegy of the body, when its configuration is x ∈ Q, is

U(x) = −
〈
P, x(a)

〉
=
〈
xt(P ), a

〉
,

where a ∈ S is the vector whose origin is the fixed point OS and extremity the

center of mass of the body, and P ∈ E∗ is the gravity force. We will identify E
with its dual E∗ by using the Euclidean scalar product as pairing. Therefore P
can be seen as a vertical vector in E directed downwards, equal to the weight of

the body (product of its mass with the gravity acceleration). We have denoted by

xt : E∗ → S∗ the transpose of the isometry x : S → E.

The Lagrangian L is

L

(
dγ(t)

dt

)
=

1

2

〈
I♭
(
ΩS(t)

)
,ΩS(t)

〉
−
〈(
γ(t)

)t
(P ), a

〉
.

We use the vector bundle isomorphism ϕS : Q × gS → TQ to derive the Euler-

Poincaré equation. With L = L ◦ ϕS , we have

L(x,XS) =
1

2

〈
I♭(XS),XS

〉
−
〈
xt(P ), a

〉
, XS ∈ gS , x ∈ Q .

The partial differentials of L are

d1L(x,X
S) = dU(x) , d2L(x,X

S) = I♭(XS) .

Therefore, the Euler-Poincaré equation is

d

dt

(
I♭
(
ΩS(t)

))
= − ad∗ΩS(t)

(
I♭
(
ΩS(t)

))
+ tϕS

(
dU
(
γ(t)

))
.

We recognize the Euler equation for the motion of a rigid body with a fixed point.

4. The Euler-Poincaré Equation in Terms of the Legendre and the Mo-
mentum Maps

4.1. The Lift to T ∗Q of the Lie Algebra Action ψ and the Momentum Map.

Let us recall that the cotangent bundle T ∗Q of the configuration space, called the

phase space of our mechanical system, is endowed with a natural 1-form η called

the Liouville form, defined by
〈
η(ξ), w

〉
=
〈
ξ, TπQ(w)

〉
, ξ ∈ T ∗Q , w ∈ Tξ(T

∗Q) ,
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where πQ : T ∗Q → Q is the canonical projection and TπQ : T (T ∗Q) → TQ
its prolongation to vectors. The canonical symplectic form on T ∗Q is its exterior

differential ω = dη. To each smooth function f : T ∗Q → R we can associate the

vector field Xf , called the Hamiltonian vector field with Hamiltonian f , defined by

i(Xf )ω = −df .

The action ψ of the Lie algebra g on the configuration space Q can be lifted, in a

very natural way, into an action ψ̂ of g on the cotangent bundle T ∗Q as follows (see

for example [14] chapter IV, proposition 1.19). For each X ∈ g, the corresponding

fundamental vector field on Q, ψ(Q) = XQ, can be considered as a smooth real-

valued function fXQ
on T ∗Q, if we set

fXQ
(ξ) =

〈
ξ,XQ ◦ πQ(ξ)

〉
, ξ ∈ T ∗Q .

We can therefore take its associated Hamiltonian vector field XfXQ
. We define the

fundamental vector field on T ∗Q associated to X, for the lifted action ψ̂, as

ψ̂(X) = XfXQ
.

To shorten the notations we will write XT ∗Q for ψ̂(X).

The action ψ̂ is Hamiltonian and admits the momentum map J : T ∗Q → g
∗

defined by

〈
J(ξ),X

〉
= fXQ

(ξ) =
〈
ξ,XQ ◦ πQ(ξ)

〉
, ξ ∈ T ∗Q , X ∈ g .

When the Lie algebra action ψ comes from an action Ψ of a Lie group G, the

momentum map J is said to be Ad∗-equivariant, which means that it is equivariant

with respect to the action of G on T ∗Q lifted from Ψ, and the coadjoint action of

G on the dual g∗ of its Lie algebra.

Observing that XQ ◦ πQ(ξ) = ϕ
(
πQ(ξ),X

)
and using the transpose ϕt : T ∗Q →

Q× g
∗ of the vector bundle isomorphism ϕ, we see that

J = pg∗ ◦ ϕ
t , in other words ϕt = (πQ, J) .

4.2. The Legendre Map L.

The vertical differential of a smooth function f : TQ → R is the map, denoted

by dvertf , which associates, to each v ∈ TQ, the differential at v of the restriction

of f to the fibre TτQ(v)Q, where τQ : TQ → Q is the canonical projection. We

see that dvertf(v) is an element of the dual of that fibre, which is the fibre over
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τQ(v) of the cotangent bundle T ∗Q. Therefore dvertf : TQ → T ∗Q is a bundles

homomorphism over the identity of Q (but not a vector bundles homomorphism

since its restriction to a fibre is not linear, except when the restriction of f to that

fibre is a quadratic form). The Legendre map L : TQ → T ∗Q associated to the

Lagrangian L is the vertical differential dvertL.

The partial differential of the function L : Q × g → R with respect to its second

variable, which plays an important part in the Euler-Poincaré equation, can be

expressed in terms of the momentum and Legendre maps. Indeed, according to its

very definition,

d2L = pg∗ ◦ ϕ
t ◦ L ◦ ϕ .

Since J = pg∗ ◦ ϕ
t, we have

d2L = J ◦ L ◦ ϕ .

4.3. Another Form of the Euler-Poincaré Equation.

The Euler-Poincaré equation can therefore be written under the form

(
d

dt
− ad∗V (t)

)(
J ◦ L ◦ ϕ

(
γ(t), V (t))

)
= J ◦ d1L

(
γ(t), V (t)

)
. (E-P2)

Of course, together with that equation, we must consider the compatibility condi-

tion

dγ(t)

dt
= ϕ

(
γ(t), V (t)) , (CC)

Remark 1 The compatibility condition (CC) is solved with respect to
dγ(t)

dt
. But

just like the usual Euler-Lagrange equation, the Euler-Poincaré equation (E-P2) is

not solved with respect to
dV (t)

dt
. Moreover, when written in local coordinates,

it appears as a system of r differential equations for the r components of the map

V : [t0, t1] → g, of which at most n can be independent: we have seen indeed that

the lift to Q× g of a given parametrized curve γ : [t0, t1] → Q is determined only

up to adddition of an arbitrary map W : [t0, t1] → g whose value W (t) at each

t belongs to the isotropy Lie subalgebra gγ(t). Therefore when r > n, equations

(E-P2) and (CC) form an under-determined system of differential equations for

the pair of unknown maps t 7→
(
γ(t), V (t)

)
, partially in implicit form.
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4.4. Example: the spherical pendulum

Let us consider an heavy material point of mass m constrained, by an ideal con-

straint, on the surface of a sphere Q of centre O and radius R, embedded in the

physical space E. As in Subsection 3.2, once units of length and time are chosen

we may consider the physical space E as an oriented Euclidean three-dimensional

vector space, with O as origin. The Lie group SO(E) acts on E on the left by an

action which maps the sphere Q onto itself, therefore acts on Q. Using the Eu-

clidean scalar product of vectors in E, we can identify a point of Q with a vector
−→x ∈ E of length R, and a vector tangent at −→x to the sphere Q with a pair (−→x ,−→v )
of vectors in E satisfying

−→x .−→x = R2 , −→x .−→v = 0 .

The choice of an orientation of E allows us to identify the Lie algebra g = so(E)
with the vector space E itself, the bracket of elements in g being expressed by the

vector product of the corresponding vectors in E. The map ϕ : Q× g → TQ can

be expressed as

ϕ(−→x ,
−→
Ω) =

−→
ΩQ(

−→x ) =
−→
Ω ×−→x .

The Euclidean scalar product allows us to identify the tangent bundle T ∗Qwith the

cotangent bundle T ∗Q and the Lie algebra g with its dual g∗. We may even consider

a pair (−→x ,−→η ) of vectors in E, the first one −→x being of length R, as the element in

T ∗
−→x
Q which evaluated on the tangent vector (−→x ,−→v ), takes the value −→η .−→v . The

scalar product −→x .−→η is not assumed to be zero, but of course the element of T ∗
−→x
Q

defined by (−→x ,−→η ) only depends on −→x and of −→η −
−→x .−→η

R2
−→x .

The Lagrangian of the system is

L(−→x ,−→v ) =
m‖−→v ‖2

2
+m−→g .−→x ,

where −→g is the acceleration of gravity (considered as a vertical vector directed

downwards). The function L = L ◦ ϕ : Q× g → R is therefore

L(−→x ,
−→
Ω) =

mR2

2

(
‖
−→
Ω‖2 −

(
−→
Ω .−→x )2

R2

)
.

By calculating the partial differentials of L, we easily see that the Euler-Poincaré

equation (E-P1) becomes

d

dt

(
mR2−→Ω −m(−→x .

−→
Ω)−→x

)
= m−→x ×−→g .
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This equation can easily be obtained by much more elementary methods: it ex-

presses the fact that the time derivative of the momentum at the origin is equal to

the momentum at that point of the gravity force (since the momentum at the origin

of the constraint force exerted on the material point by the surface of the sphere

vanishes).

5. The Euler-Poincaré Equation and Reduction

Following the remark made by Poincaré at the end of his note, let us now assume

that the map L : Q× g → R only depends on its second variable X ∈ g. In other

words, L is assumed to be a function defined on g. Its partial differential with

respect to its first variable d1L therefore vanishes, and its partial differential with

respect to its second variable d2L is its usual differential dL. The Euler-Poincaré

equation becomes (
d

dt
− ad∗V (t)

)(
dL
(
V (t)

))
= 0 . (E-P3)

This form of the Euler-Poincaré equation, called the basic Euler-Poincaré equation

in [7], only contains the unknown map t 7→ V (t), but is not solved with respect to
dV (t)

dt
: it is an implicit differential equation for the unknown map V . Moreover,

we know that when dim g > dimQ, it is underdetermined, since we have seen that

V is determined only up to addition of a map whose value, for each t, belongs to

the isotropy algebra of γ(t).

Once a solution V of (E-P3) is found, it can be inserted in the compatibility con-

dition (CC) which becomes a differential equation (in explicit form) for the still

unknown map t 7→ γ(t). Solving that equation is sometimes called reconstruction

by modern authors.

We see that when L is a function defined on g, the determination of motions of our

mechanical system can be simplified by the use of the Euler-Poincaré equation.

Usually, it involves the resolution of an implicit differential equation (the Euler-

Lagrange equation) on the 2n-dimensional manifold TQ. Now it can be made in

two steps: first by solving the Euler-Poincaré equation (E-P3), which is an implicit

differental equation for the unknown V on the r-dimensional vector space g; and

then by solving the compatibility condition (CC), which is an explicit differential

equation for the unknown γ on the n-dimensional manifold Q. This procedure is

called Lagrangian reduction in [4, 7, 8, 18]. In our opinion this name is inappro-

priate: we will see in Section 6 that this procedure can be used in the Hamiltonian

formalism as well as in the Lagrangian formalism.
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Remark 2 The assumption that L = L ◦ ϕ only depends on its second variable

does not mean that the Lagrangian L is invariant with respect to the action on TQ
of the Lie algebra g lifted from its action on Q. One can prove indeed that the Lie

derivative of L with respect to the fundamental vector field on TQ associated to a

given element X ∈ g generally does not vanish. Even when the Lie algebra action

of g on the manifold Q comes from the action of a Lie group G on that manifold,

the Lagrangian L generally is not constant on each orbit of the action of G on TQ
lifted from its action on Q. The true meaning of the assumption that L is a function

defined on g is given by the following Lemma.

Lemma 1 The map L = L ◦ ϕ : Q× g → R is a function defined on g only if and

only if, for each X ∈ g, the Lagrangian L is constant on the image (sometimes im-

properly called the graph) XQ(Q) of the fundamental vector field XQ. Moreover,

when this condition is satisfied, the momentum map J is constant on the image

L ◦XQ(Q) of the map L ◦XQ.

Proof: For any given x ∈ Q and X ∈ g

L(x,X) = L ◦ ϕ(x,X) = L
(
XQ(x)

)
,

which proves that L is a function defined on g only if and only if for each X ∈ g

L is constant on the submanifold XQ(Q) of TQ. Moreover when this condition is

satisfied, for all x ∈ Q, X and Y ∈ g,

〈
J ◦ L ◦XQ(x), Y

〉
=
〈
d2L(x,X), Y

〉
=
〈
dL(X), Y

〉
,

which proves that for each Y ∈ g, 〈J, Y 〉 is constant on the subset L ◦XQ(Q) of

T ∗Q, which means that J itself is constant on that subset. �

Remark 3 When the dimension of the Lie algebra G is strictly larger than the

dimension of the configuration space Q, very strong restrictions limit the applica-

bility of Lagrangian reduction. Let us consider for example a mechanical system

whose configuration space Q is a sphere of radius R embedded in the physical

space E, as in Subsection 4.4. The only Lagrangians L on TQ which are such that

L = L ◦ ϕ is a function defined on g are constants. We have seen indeed that the

Lie algebra g can be identified with the Euclidean vector space E. Let
−→
Ω 1 and

−→
Ω 2 be two distinct elements of g, and let −→x =

R(
−→
Ω 2 −

−→
Ω 1)

‖
−→
Ω 2 −

−→
Ω 1‖

. The vector −→x ,

which can be considered as a point on the sphere Q, is such that
−→
Ω 2 −

−→
Ω 1 lies

in its isotropy subalgebra, since that vector is normal to the plane tangent at −→x to

the sphere Q. Therefore if we assume that L(−→x ,
−→
Ω) only depends on

−→
Ω , not on
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−→x , we must have L(
−→
Ω 2) = L(

−→
Ω 1), and we see that the Lagrangian L must be a

constant.

6. The Euler-Poincaré Equation in Hamiltonian Formalism

6.1. The Hamiltonian.

No special assumption was made until now about the regularity of the Lagrangian

L. Now we assume that L is hyperregular, which means that the Legendre map

L is a diffeomorphism of TQ onto the phase space T ∗Q. We can then define a

smooth function H : T ∗Q→ R, called the Hamiltonian, given by

H(ξ) =
〈
ξ,L−1(ξ)

〉
− L

(
L−1(ξ)

)
, ξ ∈ T ∗Q .

6.2. Lagrangian, Hamiltonian and Euler-Poincaré Formalisms.

The Lagrangian formalism is the mathematical description of motions of our me-

chanical system as smooth parametrized curves γ : [t0, t1] → Q at which the

action functional

I(γ) =

∫ t1

t0

L

(
dγ(t)

dt

)
dt

is stationary with respect to variations of γ with fixed endpoints. As we have seen

in Section 2, Poincaré has proven that the Lagrangian formalism is equivalent to

the Euler-Poincaré formalism, that means the mathematical description of motions

as smooth parametrized curves (γ, V ) : [t0, t1] → Q × g which satisfy the Euler-

Poincaré equation (E-P1) and the compatibility condition (CC).

The Hamiltonian formalism is the mathematical description of motions of our me-

chanical system as smooth parametrized curves ζ : [t0, t1] → T ∗Q which satisfy

the Hamilton equation, i.e., the differential equation associated to the Hamiltonian

vector field XH ,
dζ(t)

dt
= XH

(
ζ(t)

)
. (H)

Since L is assumed to be hyperregular, the Lagrangian formalism and the Hamil-

tonian formalisms are equivalent. Therefore, the Euler-Poincaré formalism too is

equivalent to the Hamiltonian formalism.

When dim g = dimQ, the equivalence between the Euler-Poincaré and the Hamil-

tonian formalisms is easily understood, since the vector bundle homomorphism

ϕ : Q× g → TQ is an isomorphism; its transpose ϕt = (πQ, J) : T
∗Q→ Q× g

∗
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too is an isomorphism. The Euler-Poincaré equation can be written on Q×g
∗, and

appears then as the image by the isomorphism (πQ, J) of the Hamilton equation

on T ∗Q.

Things are more complicated when dim g > dimQ. The vector bundles homo-

morphism ϕ : Q × g → TQ is surjective but no more injective: its kernel is the

vector sub-bundle of Q× g whose fibre over each point x ∈ Q is the isotropy sub-

algebra gx of that point. Therefore its transpose ϕt = (πQ, J) : T
∗Q → Q × g

∗

is an injective, but no more surjective vector bundles homomorphism. Its image is

the vector sub-bundle Υ of Q× g
∗ whose fibre over each point x ∈ Q is the anni-

hilator (gx)
0 of gx. The dimension of Υ is 2n. We can choose a vector sub-bundle

of Q × g whose fibre over each point x ∈ Q is a vector subspace of g comple-

mentary to the isotropy Lie sub-algebra gx, for example by choosing a symmetric

positive definite bilinear form on g, and taking for fibre over each x ∈ Q the or-

thogonal of gx with respect to that form. The total space Γ of that sub-bundle is a

2n-dimensional manifold. The map

(πQ, J) ◦ L ◦ ϕ : Q× g → Q× g
∗

restricted to Γ is now a diffeomorphism of Γ onto its image Υ. The Euler-Poincaré

equation can be written on Υ, and appears then as the image by (πQ, J) (considered

as taking its values in Υ) of the Hamilton equation on T ∗Q.

7. Euler-Poincaré Reduction in the Hamiltonian Formalism.

The Lagrangian L is still assumed to be hyperregular, and in addition such that L =
L ◦ ϕ is a function of its second variable only, that means a function defined on g.

As in Section 5, we therefore have d1L = 0 and d2L = dL. We know by Lemma 1

that for each X ∈ g the Lagrangian L is constant on the submanifold XQ(Q) of

TQ, and the momentum map J is constant on the submanifold L◦XQ(Q) of T ∗Q.

The next Lemma shows that the Hamiltonian has a similar invariance property.

Lemma 2 When the Lagrangian L is assumed to be hyperregular and such that L
is a function defined on g only, for each X ∈ g the Hamiltonian H is constant on

the submanifold L ◦XQ(Q) of T ∗Q.

Proof: For a given X ∈ g and alla x ∈ Q, we have

H ◦ L ◦XQ(x) =
〈
L ◦XQ(y),XQ(y)

〉
− L ◦XQ(y) =

〈
dL(X),X

〉
− L(X) ,

which proves that H is constant on the submanifold L ◦XQ(Q) of T ∗Q. �
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7.1. The Euler-Poincaré Equation on g
∗.

With the assumptions made in this section, the Euler-Poincaré and the Hamilto-

nian formalisms are equivalent; therefore a smooth parametrized curve (γ, V ) :
[t0, t1] → Q × g which satisfies the compatibility condition (CC) also satisfies

the Euler-Poincaré equation (E-P1) if and only if the parametrized curve ζ =
L ◦ ϕ ◦ (γ, V ) : [t0, t1] → T ∗Q satisfies the Hamilton equation (H). The Euler-

Poincaré equation becomes

(
d

dt
− ad∗V (t)

)(
J ◦ ζ(t)

)
= 0 . (E-P4)

This equation shows that when (γ, V ) satisfies (CC) and (E-P1), the parametrized

curve ξ = J ◦ ζ = J ◦ L ◦ ϕ ◦ (γ, V ) takes its value in a coadjoint orbit of

g
∗. One may wish to consider it as a differential equation in g

∗ for the unknown

parametrized curve ξ : [t0, t1] → g
∗. But there are at least two difficulties.

1. The term ad∗V (t) depends of V (t), which is an element in g whose depen-

dence on ξ(t) = J ◦ ζ(t) is complicated. Of course, we can write

γ(t) = πQ ◦ ζ(t) and
(
γ(t), V (t)

)
∈ ϕ−1 ◦ L−1

(
ζ(t)

)
,

which proves that when ζ(t) is known, V (t) is determined up to an element

in the isotropy Lie algebra g
πQ

(
ζ(t)
). Still, V (t) is not fully determined by

ξ(t).

2. When r = dim g is strictly larger than n = dimQ, for each x ∈ Q the map

J : T ∗Q → g
∗ restricted to T ∗

xQ is injective, but not surjective: its image

is the annihilator (gx)
0 of the isotropy Lie algebra gx. Therefore Equation

(E-P4) may not be well defined on the whole vector space g
∗.

However, let us recall that g∗ has a natural Poisson structure, called the Kirillov-

Kostant-Souriau structure, which allows to associate to any smooth function h :
g
∗ → R its Hamiltonian vector field Xh, whose expression is

Xh(ξ) = − ad∗dh(ξ) ξ , ξ ∈ g
∗ .

Moreover, the momentum map J : T ∗Q → g
∗ is a Poisson map when T ∗Q is

endowed with the Poisson structure associated to its symplectic structure, and g
∗

with its Kirillov-Kostant-Souriau Poisson structure ( [14], chapter IV proposition

5.2). Therefore, if there exists a smooth function h : g∗ → R such that H = h ◦ J ,
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the parametrized curve ξ = J ◦ ζ : [t0, t1] → g
∗ satisfies the Hamilton differential

equation on g
∗

dξ(t)

dt
= − ad∗

dh
(
ξ(t)
)(ξ(t)

)
. (E-P5)

It is Equation (E-P4) with V (t) = −dh
(
ξ(t)

)
. We see therefore that Equa-

tion (E-P4) becomes a well-defined differential equation on g
∗, containing no un-

known other than the parametrized curve ξ = J ◦ζ : [t0, t1] → g
∗, if and only if the

Hamiltonian H : T ∗Q → R is a map obtained by composition of the momentum

map J : T ∗Q → g
∗ with a smooth map h : g∗ → R. While the better known

Marsden-Weinstein reduction procedure [16] is used when the momentum map is

a first integral of the Hamilton equation (H), in the Euler-Poincaré reduction pro-

cedure the momentum map J need not be a first integral, but a different invariance

property is needed: the Hamiltonian must be a map obtained by composition of the

momentum map with a smooth map h : g∗ → R. These two different reduction

procedures are well known for Hamiltonian systems (see for example [14] chapter

IV section 6.11, or [15] last remark in Section 2). The invariance properties used

by these two different reduction procedure are related by the fact that, for each

ζ ∈ T ∗Q, each of the the two vector subspaces kerTζJ and TζOζ of the tangent

space Tζ(T
∗Q) is the symplectic orthogonal of the other. We have denoted by

TζOζ the tangent space at ζ to the orbit of ζ under the action of g on T ∗Q, that

means the vector subspace of Tζ(T
∗Q) made by the values at ζ of the fundamental

vector fields XT ∗Q, for all X ∈ g.

8. Systems whose Configuration Space is a Lie Group

In this section we assume that Q is a connected Lie group G whose Lie algebra

(identified with the tangent space to G at the neutral element) is g, and that the Lie

algebra action ψ is the map which associates to each X ∈ g the right invariant

vector field XR
G on Q ≡ G whose value at the neutral element is X. Therefore

n = dimQ = dim g = r.

Let us first recall some well known results about the actions of a Lie group on itself

and their lifts to the tangent and cotangent bundles.

8.1. Actions of a Lie Group on itself on the Right and on the Left.

For each g ∈ G, we denote by Rg : G → G and Lg : G → G the left and right

translations

Rg(x) = xg , Lg(x) = gx , x ∈ G ,
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and by TRg : TG→ TG and TLg : TG→ TG their prolongations to vectors.

Observe that XR
G is the fundamental vector field associated to X for the action of

G on itself by translations on the left

ΦL : G×G→ G , ΦL(g, x) = gx ,

not on the right, since

XR
G(x) =

d
(
exp(tX)x

)

dt

∣∣∣
t=0

= TRx(X) , X ∈ g , x ∈ G .

The vector bundles morphism ϕ : G× g → TG is now an isomorphism, given by

ϕ(x,X) = XR
G(x) = TRx(X) , x ∈ G , X ∈ g .

To define the lift to the tangent bundle TG of the action ΦL, we take for each g ∈ G
the prolongation to vectors of the diffeomorphism Lg : G→ G, x 7→ Lg(x) = gx.

The obtained action of G on TG, denoted by Φ
L
: G× TG→ TG, is given by

Φ
L
(g, v) = TLg(v) , g ∈ G , v ∈ TG .

The lift to the cotangent bundle T ∗G of the action ΦL, denoted by Φ̂L, is the

contragredient of Φ
L

, with a change of sign (to obtain an action on the left):

Φ̂L(g, ζ) = (TLg−1)t(ζ) , g ∈ G , ζ ∈ T ∗G .

We have denoted by (TLg−1)t : T ∗G → T ∗G the transpose of the linear vector

bundles isomorphism TLg : TG→ TG.

The action Φ̂L : G × T ∗G → T ∗G is Hamiltonian (see for example [14], chapter

IV, theorem 4.6), and has as an Ad∗-invariant momentum map

JL : T ∗G→ g
∗ , JL(ζ) =

(
TRπG(ζ)

)t
(ζ) , ζ ∈ T ∗G .

Let us now consider the action of the Lie group G on itself by translations on the

right

ΦR : G×G→ G , ΦR(x, g) = xg .

For this action, the fundamental vector field associated to each X ∈ g is the left

invariant vector field XL
G on G whose value at the neutral element is X. The lift to

TG and to T ∗G of the action ΦR, denoted respectively Φ
R
: TG×G → TG and

Φ̂R : T ∗G × G → T ∗G, are given by the formulae, in which v ∈ TG, ζ ∈ T ∗G,

g ∈ G,

Φ
R
(v, g) = TRg(v) , Φ̂R(ζ, g) = (TRg−1)t(ζ) .

The action Φ̂R is Hamiltonian and admits as an Ad∗-invarant momentum map

JR(ζ) =
(
TLπG(ζ)

)t
(ζ) , ζ ∈ T ∗G .
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Proposition 3 A smooth Hamiltonian H : T ∗G → R can be written as H =
h ◦ JL, where h : g∗ → R is a smooth map, if and only if H remains invariant

by the action Φ̂R. When the Hamiltonian H comes from a hyperregular smooth

Lagrangian L : TG → R, H can be written as H = h ◦ JL if and only if the

Lagrangian L is such that the function

L = L ◦ ϕ : G× g
∗ → R , (x,X) 7→ L(x,X) = L

(
TRx(X)

)

(with x ∈ G, X ∈ g) is a function defined on g
∗, or if and only if L remains

invariant by the action Φ
R

.

Proof: The above given expressions of the actions Φ̂L and Φ̂R and of their mo-

mentum maps JL and JR prove that the level sets (JL)−1(ξ) of the map JL, for

all ξ ∈ g
∗, are the orbits of the action Φ̂R (and the level sets of JR are the orbits

of the action Φ̂L). Therefore they are n-dimensional smooth submanifolds of T ∗G
diffeomorphic to G. Since JL : T ∗G → g

∗ is a surjective submersion, the Hamil-

tonian H can be written as H = h ◦ JL, where h : g∗ → R is a smooth map, if

and only if it takes a constant value on each level set of JL, i.e., on each orbit of

ΦR, in other words if and only if H remains invariant by the action Φ̂R. The rela-

tionship between a hyperregular Lagrangian L and the corresponding Hamiltonian

H shows that the invariance of H by the action Φ̂R is equivalent to the invariance

of L by the action Φ
R

. �

Remark 4 When the Hamiltonian can be written as H = h ◦ JL, where h : g∗ →
R is a smooth function, the Euler-Poincaré reduction procedure allows the reso-

lution of the Euler-Poincaré equation (E-P5) as a first step to solve the Hamilton

equation (H). On the other hand, Noether’s theorem (see for example [14], Chapter

IV, Theorem 2.6) asserts that JR is a first integral of (H), and allows the use of the

Marsden-Weinstein reduction procedure. We see therefore that the assumptions

under which the Euler-Poincaré and Marsden-Weinstein reduction procedures can

be used are the same. The next proposition will allow us to prove that these two

reduction procedures are equivalent.

Proposition 4 For each ζ ∈ g
∗, (JR)−1

(
JR(ζ)

)
and (JL)−1

(
JL(ζ)

)
are two

smooth submanifolds of T ∗G, diffeomorphic to G, which are the orbits through ζ

of the actions Φ̂L : G × T ∗G → T ∗G and Φ̂R : T ∗G ×G → T ∗G, respectively.

Their intersection is a smooth isotropic submanifold of the symplectic manifold

(T ∗G,ωT ∗G), which can be written both as

(JR)−1
(
JR(ζ)

)
∩ (JL)−1

(
JL(ζ)

)
=
{
(TLg−1)t(ζ) ; g ∈ GJL(ζ)

}
,
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and as

(JR)−1
(
JR(ζ)

)
∩ (JL)−1

(
JL(ζ)

)
=
{
(TRγ−1)t(ζ) ; γ ∈ GJR(ζ)

}
,

where GJL(ζ) and GJR(ζ) are the isotropy groups, respectively, of JL(ζ) and of

JR(ζ) for the coadjoint action of G on g
∗.

Moreover, the tangent space at ζ to (JR)−1
(
JR(ζ)

)
∩(JL)−1

(
JL(ζ)

)
is the kernel

of the closed 2-form induced by ωT ∗G on the submanifolds (JR)−1
(
JR(ζ)

)
and

(JL)−1
(
JL(ζ)

)
.

Proof: We already know that the level sets of JR are the orbits of Φ̂L and that the

level sets of JL are the level sets of Φ̂R. These actions being free, these level sets

are smooth submanifolds diffeomorphic to G.

The level subset (JL)−1
(
JL(ζ)

)
is the set of elements (TRγ−1)t(ζ), for all γ ∈ G.

Let us calculate

JR
(
(TRγ−1)t(ζ)

)
= (TLπG(ζ)γ)

t(TRγ−1)t(ζ) = Ad∗γ−1 ◦ J
R(ζ) .

Therefore (TRγ−1)t(ζ) belongs to (JR)−1
(
JR(ζ)

)
if and only if Ad∗γ−1◦JR(ζ) =

JR(ζ), i.e., if and only if γ belongs to GJR(ζ), the isotropy subgroup of JR(ζ) for

the coadjoint action of G on g
∗. We have proved that

(JR)−1
(
JR(ζ)

)
∩ (JL)−1

(
JL(ζ)

)
=
{
(TRγ−1)t(ζ) ; γ ∈ GJR(ζ)

}
.

A similar calculation shows that

JL(ζ) = Ad∗πG(ζ) ◦ J
R(ζ) ,

from which we deduce that

GJL(ζ) = πG(ζ)GJR(ζ)

(
πG(ζ)

)−1

and that

(JR)−1
(
JR(ζ)

)
∩ (JL)−1

(
JL(ζ)

)
=
{
(TLg−1)t(ζ) ; g ∈ GJL(ζ)

}
.

Finally, let us recall that when a Lie group G acts on a symplectic manifold (M,ω)
by a Hamiltonian action which admits a map J as momentum map, for each point

x ∈ M each of the two vector subspaces of TxM : (i) the tangent space at x to

the orbit of this point, and (ii) kerTxJ , is the symplectic orthogonal of the other.

Therefore, for each ζ ∈ T ∗M , each of the tangent spaces at ζ to the subman-

ifolds (JR)−1
(
JR(ζ)

)
and (JL)−1

(
JL(ζ)

)
is the symplectic orthogonal of the

other, and their intersection is the kernel at ζ of the closed 2-forms induced by

the canonical symplectic 2form ωT ∗G on the submanifolds (JR)−1
(
JR(ζ)

)
and

(JL)−1
(
JL(ζ)

)
. �
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Corollary 5 For each ξ ∈ g
∗, the submanifold (JR)−1(ξ) is regularly foliated

by its intersections with the submanifolds (JL)−1(η), where η runs over g
∗. The

leaves of this foliation are the orbits of the action on (JR)−1(ξ) of Φ̂L restricted to

the isotropy subgroup Gξ of G (for the coadjoint action of G on g
∗). These leaves

are the maximal isotropic submanifolds of the symplectic manifold (T ∗G,ωT ∗G)
contained in (JR)−1(ξ). The set of leaves of that foliation is a smooth manifold

Mξ , the canonical projection pξ : (JR)−1(ξ) → Mξ is a smooth map, and Mξ is

endowed with a symplectic form ωξ whose inverse image p∗ξωξ is the closed 2-form

induced by ωT ∗G on (JR)−1(ξ).

Moreover, the restriction to (JR)−1(ξ) of the map JL : T ∗G → g
∗ induces, by

quotient, a smooth map JL
ξ : Mξ → g

∗, whose image is the coadjoint orbit of ξ.

Considered as a map defined on Mξ with values in the coadjoint orbit of ξ, the

map JL
ξ is a symplectic diffeomorphism.

Proof: For each ζ ∈ (JR)−1(ξ), we know by Proposition 4 that the kernel at

ζ of the closed 2-form induced on (JR)−1(ξ) by ωT ∗G is the tangent space at ζ

to the orbit through that point of the action Φ̂L restricted to Gξ . Its dimension,

equal to dimGξ , does not depend on ζ . Therefore, the rank of the closed 2-form

induced by ωT ∗G on (JR)−1(ξ) is constant, and its kernel is an integrable vec-

tor sub-bundle of T
(
(JR)−1(ξ)

)
. The orbits of the action on (JR)−1(ξ) of Φ̂L

restricted to Gξ are the leaves of the foliation F determined by this integrable

vector sub-bundle. Therefore they are the the maximal connected isotropic sub-

manifolds contained in (JR)−1(ξ). Let Mξ be the set of leaves of F . For each

ζ ∈ (JR)−1(ξ), kerTζJ
L is the tangent space at ζ to the orbit of Φ̂R throught that

point; its interserction with Tζ
(
(JR)−1(ξ)

)
is the tangent space at ζ to the leaf of

F through that point. Therefore, the map JL restricted to (JR)−1(ξ) induces by

quotient a map JL
ξ : Mξ → g

∗, which is injective and whose image is Ad∗G(ξ),

the coadjoint orbit of ξ. Considered as defined on Mξ with values in Ad∗G(ξ), the

map JL
ξ becomes bijective and can be used to transfer on Mξ the smooth mani-

fold structure of Ad∗G(ξ). We know that the coadjoint orbits are the symplectic

leaves of g∗ endowed with its Kirillov-Kostant-Souriau Poisson structure and that

JL : T ∗G → g
∗ is a Poisson map (see, for example, [14], Chapter IV, Theorem

4.8, Remarks 4.9 and Proposition 5.2). Therefore the pull-back of the canonical

symplectic form on Ad∗G(ξ) is a symplectic form on Mξ whose pull-back by the

canonical projection pξ : (JR)−1(ξ) → Mξ is the 2-form induced by ωT ∗G on

JR−1
(ξ). �
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8.2. The Marsden-Weinstein and Euler-Poincaré Reduction Procedures.

In the Marsden-Weinstein reduction procedure [16], when the Hamiltonian H re-

mains invariant under the action Φ̂R, one considers the subset (JR)−1(ξ) of T ∗G
on which the momentum map JR takes a given value ξ ∈ g

∗. In the present case, it

is a submanifold, image of the left-invariant 1-form on G whose value at the neu-

tral element is ξ. Then one looks at the subgroup made by elements g ∈ G such

that Φ̂R
g maps this submanifold onto itself. We have seen (Corollary 5) that it is

Gξ , and that the set of orbits of its action on on (JR)−1(ξ) is a smooth symplectic

manifold (Mξ, ωξ). This symplectic manifold is the Marsden-Weinstein reduced

symplectic manifold for the value ξ of the momentum map JR. Since H is con-

stant on each orbit of the action of Gξ on (JR)−1(ξ), there exists on Mξ a unique

smooth function Hξ such that Hξ ◦pξ is equal to the restriction of H to (JR)−1(ξ).

The restriction to (JR)−1(ξ) of the Hamiltonian vector field XH on T ∗Q projects,

by the canonical projection pξ : (JR)−1(ξ) 7→ Mξ , onto the Hamiltonian vector

field XHξ
on the symplectic manifold (Mξ , ωξ). Therefore, the determination of

solutions of the Hamilton equation (H) (i.e., of integral curves of XH ) contained in

(JR)−1(ξ) can be made in two steps. In the first step, one determines the integral

curves of the Hamiltonian vector field XHξ
on the reduced symplectic manifold

(Mξ,Ωξ). In the second step (sometimes called reconstruction) one determines

the integral curves of XH contained in (JR)−1(ξ) themselves.

Under the same assumptions, in the Euler-Poincaré reduction procedure, one uses

the existence of a smooth function h : g∗ → R such that H = h ◦ JL and the

fact that JL is a Poisson map. Each solution of the Hamilton equation (H) is

mapped by JL onto a solution of the Euler-Poincaré equation (E-P5) (i.e., onto

an integral curve of the the Hamiltonian vector field Xh on the Poisson manifold

g
∗). Therefore, the determination of solutions of the Hamilton equation (H) can be

made in two steps. In the first step, one determines their projection by JL, which

are the integral curves of the Hamiltonian vector field Xh on the Poisson manigold

g
∗. This determination can be made easier if one uses the fact that each integral

curve of XHξ
is contained in a coadjoint orbit (a consequence of the fact that JR

is a first integral). In the second step one determines the integral curves of the

compatibility condition (CC), from which the solutions of (H) are easily deduced.

The Proposition 4 and its Corollary 5 clearly show that under the assumptions made

in this section, i.e. when the configuration space of our system is a connected Lie

group G and when the lift to T ∗G of the action of G on itself by translations on the

right leaves the Hamiltonian invariant, the first steps of the Marsden-Weinstein and
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Euler-Poincaré reduction procedures are equivalent. In the Marsden-Weinstein re-

duction procedure, one has to determine the integral curves of XHξ
on the Marsden-

Weinstein reduced symplectic manifold (Mξ, ωξ). In the Euler-Poincaré reduction

procedure, one has to determine the integral curves of Xh on the symplectic leaf

Ad∗Gξ of the Poisson manifold g
∗. By Corollary 5, JL

ξ is a symplectic diffeomor-

phism between these two symplectic manifolds such that h ◦ JL
ξ = Hξ.

Remarks 5

1. Similar results hold, mutatis mutandis, when it is the lift to T ∗G of the action

of G on itself by translations on the left (instead of on the right) which leaves the

Hamiltonian invariant.

2. Let us identify g
∗ with T ∗

eG, and consider the two momentum maps JR :

T ∗G → g
∗ and JL : T ∗G → g

∗, associated to the actions on the right Φ̂R :
T ∗G × G → T ∗G and on the left ΦL : G × T ∗G → T ∗G, respectively. The

cotangent bundle T ∗G being endowed with the Poisson structure associated to its

canonical symplectic 2-form ωT ∗G (which is the exterior differential of the Liou-

ville 1-form), we can define on g
∗ the Poisson structure for which JR is a Poisson

map, and the Poisson structure for which JL is a Poisson map. Each of these struc-

ture is the opposite of the other; however, they are isomorphic by the vector space

automorphism of g∗ X 7→ −X. The formula for the bracket of two functions f
and g defined on g

∗ is the same fore these two Poisson structures,

{f, g}(ξ) =
〈
ξ,
[
df(ξ),dg(ξ)

]〉

where, in the right hand side, the differentials at ξ, df(ξ) and dg(ξ), of the func-

tions f and g, which are linear forms on g
∗, are considered as elements of g, iden-

tified with TeG. The bracket
[
df(ξ), dg(ξ)

]
which appears in the right hand side is

the bracket of fundamental vector fields on G for the action of G onto itself whose

lift to T ∗G is the action whose momentum map is the momentum map under con-

sideration. In other words, it is the bracket of vector fields

• invariant by translations on the left for the Poisson structure on g
∗ for which

JR is a Poisson map,

• invariant by translations on the right for the Poisson structure on g
∗ for which

JL is a Poisson map.

When G acts on T ∗G by the action Φ̂L, its action on g
∗ which renders JL equiv-

ariant is an action on the left, whose expression is

(g, ξ) 7→ Ad∗g(ξ) , g ∈ G , ξ ∈ g
∗ ,
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and when G acts on T ∗G by the action Φ̂R, its action on g
∗ which renders JR

equivariant is an action on the right, whose expression is

(ξ, g) 7→ Ad∗g−1(ξ) , ξ ∈ g
∗ , g ∈ G .

For the adjoint representation our sign convention is the usual one,

Adg(X) = TLg ◦ TRg−1(X) , g ∈ G , X ∈ g ≡ TeG ,

and for the coadjoint representation it is

Ad∗g(ξ) = (Adg−1)t(ξ) , g ∈ G , ξ ∈ g
∗ ≡ T ∗

eG ,

where (Adg−1)t : g∗ → g
∗ is the transpose of Adg−1 : g → g. With these sign

conventions

d(Adexp(tX)Y )

dt

∣∣∣
t=0

= [X,Y ] , X and Y ∈ g ,

the bracket [X,Y ] in the right hand side being that of vector fields on G invariant

by translations on the left, which is the most frequently made convention for the

bracket on the Lie algebra of a Lie group.

3. The formulae given in this section for the Hamiltonian actions of a Lie group

G on its cotangent bundle can be generalized, the canonical symplectic form on

T ∗G being modified by addition of the pull-back of a closed 2-form on G. This

generalization is useful for dealing with mechanical systems involving magnetic

forces. See for example [11], [14] Chapter IV section 4 and [15].

4. Alan Weintein and his students [21, 22] have developed a very nice theory of

symplectic groupoids in which the properties of the source and target maps gener-

alize those of the momentum maps JR and JL of the actions of a Lie group on its

cotangent bundle. The cotangent bundle of a Lie group is one of the simplest non-

trivial examples of symplectic groupoids, a fact which should convince the reader

that symplectic groupoids are very natural structures rather than artificial mathe-

matical artefacts.

9. Symmetry Breaking and Appearance of Semi-direct Products.

In [7] the authors write “It turns out that semidirect products occur under rather

general circumstances when the symmetry in T ∗G is broken”. Let us propose an

explanation of this remarkable fact.
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In this section G is a connected n-dimensional Lie group and G1 is a closed, con-

nected k-dimensional subgroup of G. The notations ΦR and ΦL for the actions of

G on itself by translations on the right and on the left, Φ̂R and Φ̂L for their lifts to

the cotangent bundle T ∗G, JR and JL for their momentum maps, are the same as

in Section 8. We assume that H : T ∗G → R is a smooth Hamiltonian invariant

by Φ̂R
1 = Φ̂R|G1

, the restriction to G1 of the action Φ̂R, rather than by the action

Φ̂R of the whole Lie group G. The Hamiltonian H therefore cannot be written as

the composition of the momentum map JL with a smooth function defined on g
∗,

so the Euler-Poincaré equation (E-P4), written for the action Φ̂L, cannot be con-

sidered as an autonomous differential equation on g
∗ for the parametrized curve

ξ = JL ◦ ζ . However, we will prove that under some additional assumptions the

action Φ̂L can be extended into a Hamiltonian action of a semi-direct product of

G with a finite dimensional vector space of smooth functions defined on G/G1,

in such a way that the orbits of this extended action are the leaves of the foliation

of T ∗G determined by the symplectic orthogonal of the sub-bundle tangent to the

orbits of Φ̂R
1 . The level sets of the momentum map of this extended action are

the orbits of Φ̂R
1 , which will allow us to write the Euler-Poincaré equation for this

extended action instead of for the action Φ̂L.

9.1. Two orthogonal foliations of the cotangent bundle

Lemma 6 The action Φ̂R
1 is Hamiltonian and has JR

1 = pg∗
1
◦ JR as momentum

map, where the projection pg∗
1
: g∗ → g

∗
1 is the transpose of the canonical linear

inclusion ig1 : g1 → g. The orbits of that action are the intersections of the orbits

of Φ̂R with the pull-backs π−1
G (gG1), by the canonicat projection πG : T ∗G→ G,

of orbits of the action of G1 on G by translations on the right. The set F of vectors

tangent to these orbits and its symplectic orthogonal orthF are both completely

integrable vector sub-bundles of T (T ∗G), of ranks k and 2n− k, respectively.

Proof: The fundamental vector fields on T ∗G for the action Φ̂R
1 are the Hamilto-

nian vector fields whose Hamiltonians can be written

〈
JR, ig1(X)

〉
=
〈
(ig1)

t ◦ JR,X
〉
=
〈
pg∗

1
◦ JR,X

〉
, with X ∈ g1 .

Therefore the action Φ̂R
1 is Hamiltonian and has pg∗

1
◦JR as momentum map. This

action being the restriction to G1 of Φ̂R : T ∗G ×G → T ∗G, which projects onto

the action ΦR : G × G → G, its orbits are the intersections of the orbits of Φ̂R

with the pull-backs by πG of cosets gG1, wit g ∈ G. Since all these orbits are of

the same dimension k, the set F is a completely integrable vector sub-bundle of
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T (T ∗G). Its symplectic orthogonal orthF is therefore a rank 2n − k vector sub-

bundle of T (T ∗G). This vector sub-bundle is generated by Hamiltonian vector

fields whose Hamiltonians f are smooth functions on T ∗G whose restrictions to

each orbit of Φ̂R
1 are constants. Let f1 and f2 be two such functions. The bracket of

the Hamiltonian vector field Xf1 and Xf2 is the Hamiltonian vector field X{f1,f2}.

Let h : T ∗G→ R be the smooth function

h =
〈
pg∗

1
◦ JR,X

〉
,

where X is any element in g1. Using the Jacobi identity, we can write

i(Xh)d
(
{f1, f2}

)
=
{
h, {f1, f2}

}
=
{
{h, f1}, f2

}
+
{
f1, {h, f2}

}
= 0 ,

since {h, f1} = i(Xh)df1 = 0 and {h, f2} = i(Xh)df2 = 0, the vector field

Xh being tangent to the orbits of Φ̂R
1 and the retrictions of the functions f1 and f2

to each orbit of this action being constants. Since F is generated by Hamiltonian

vector fields such as Xh, the restriction of {f1, f2} to each orbit of Φ̂R
1 is constant.

The Frobenius theorem then proves that orthF is completely integrable. �

Remarks 6

1. Lemma 6 may be seen as a special case of a result due to P. Libermann (see

[12, 13] or [14] Chapter III Proposition 9.7).

2. On the symplectic manifold (T ∗G,ωT ∗G) each of the two foliations F and

orthF is the symplectic orthogonal of the other, and is such that the space of

smooth functions whose restrictions to the leaves are constants is closed with re-

spect to the Poisson bracket. If the set of leaves of one of these foliations has a

smooth manifold structure for which the canonical projection of T ∗G onto this set

is a submersion, there exists on this set a unique Poisson structure for which the

canonical projection is a Poisson map. The pair of Poisson manifolds made by the

sets of leaves when this occurs for both foliations is said to be a dual pair, in the

terminology introduced by Alan Weinstein [20].

The next two two propositions will allow us to prove that F and orthF determine

indeed a dual pair.

Proposition 7 The leaves of the foliation of T ∗G determined by orthF are the

left invariant affine sub-bundles whose fibres over the neutral element are affine

subspaces of g∗ whose associated vector subspace is the annihilator g01 of the sub-

algebra g1. Moreover, they coincide with the level sets of the momentum map

JR
1 = pg∗ ◦ JR : T ∗G → g

∗
1. The map which associates to each leaf the value

taken by JR
1 on that leaf is a bijection of Leaves(orthF) onto g

∗
1.
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Proof: The maps JR : T ∗G → g
∗ and pg∗

1
: g∗ → g

∗
1 both are surjective submer-

sions. Therefore JR
1 = pg∗

1
◦ JR is a surjective submersion. Let ζ1 and ζ2 be two

elements of T ∗G. Using the expression of JR, we obtain, for any X ∈ g1,

〈
JR
1 (ζ1)− JR

1 (ζ2),X
〉
=
〈
(TLπG(ζ1))

t(ζ1)− TLπG(ζ2))
t(ζ2),X

〉
.

Therefore JR
1 (ζ1) = JR

1 (ζ2) if and only if (TLπG(ζ1))
t(ζ1)−TLπG(ζ2))

t(ζ2) ∈ g
0
1,

the annihilator of g1. The level sets of JR
1 are therefore the left invariant affine sub-

bundles whose fibres over the neutral element are affine subspaces of g
∗ whose

associated vector subspace is g
0
1. Since for each ζ ∈ T ∗G kerTζJ

R
1 is the sym-

plectic orthogonal of Fζ , the leaves of the foliation of T ∗G determined by orthF

are the connected components of the level sets of JR
1 . But since G is assumed to

be connected, these level sets are connected, therefore coincide with the elements

of Leaves(orthF). The last assertion immediately follows. �

Proposition 8 Let ̟ : G → G/G1 be the canonical projection which associates

to each g ∈ G the coset gG1. The map (JL,̟ ◦ πG) : T
∗G → g

∗ × (G/G1) is

a surjective submersion, whose restriction to each leaf of the foliation determined

by F is constant. The map defined on the set Leaves(F) of leaves of that foliation,

which associates to each leaf the value taken by (JL,̟ ◦ πG) on that leaf, is a

bijection of Leaves(F) onto g
∗ × (G/G1).

Proof: The maps JL : T ∗G → g
∗, πG : T ∗G → G and ̟ : G → G/G1 are

surjective submersions. Therefore ̟ ◦ πG and (JL,̟ ◦ πG) are submersions, and

its expression proves that (JL,̟ ◦ πG) is surjective. We already know (Lemma

1) that the level sets of JL are the orbits of the action Φ̂R. We have seen (Lemma

6) that the orbits of Φ̂R
1 , in other words the leaves of the foliation determined by

F , are the intersections of the level sets of JL with the pull-backs by the canonical

projection πG : T ∗G → G, of orbits of the action of G1 on G by translations on

the right. Since these orbits are inverse images of points in G/G1 by the projection

̟, each leaf of the foliation determined by F is a level set of the map (JL,̟ ◦
πG). Therefore, (JL,̟ ◦ πG) determines indeed a bijection of Leaves(F) onto

g
∗ × (G/G1). �

Proposition 9 On each of the two smooth manifolds g
∗
1 and g

∗ × (G/G1), there

exists a unique Poisson structure for which, when T ∗G is equipped with the Poisson

structure associated to its symplectic form ωT ∗G, the maps JR
1 : T ∗G → g

∗
1 and

(JL,̟ ◦ πG) : T
∗G → g

∗ × (G/G1) are Poisson maps. Moreover, there exists a

unique smooth function h : g∗ × (G/G1) → R such that

H = h ◦ (JL,̟ ◦ πG)
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and the Hamiltonian vector field XH on the symplectic manifold (T ∗G,ωT ∗G) is

mapped, by the prolongation to vectors of the submersion (JL,̟ ◦ πG), onto the

Hamiltonian vector field Xh on the Poisson manifold g
∗ × (G/G1).

Proof: The first assertion follows from Propositions 7 and 8 which show that the

pair of manifolds
(
g
∗
1, g

∗ × (G/G1)
)

is a dual pair of Poisson manifolds in the

sense of Alan Weinstein. The second assertion is an immediate consequence of the

constancy of H on each leaf of the foliation determined by F and of the fact that

(JL,̟ ◦ πG) is a submersion. �

Remark 7 Proposition 9 shows that as a first step for the determination of inte-

gral curves of the Hamiltonian vector field XH on T ∗G, one can determine their

projections by (J l,̟ ◦ πG) on the Poisson manifold g
∗ × (G/G1), which are the

integral curves of Xh. Although it is not the dual space of a finite dimensional Lie

algebra, that Poisson manifold can be used for reduction.

9.2. The extended action of a semi-direct product

Instead of the Poisson manifold g
∗ × (G/G1), one may use for reduction the dual

space of the semi-direct product of g with a finite dimensional vector space. The

differential equation one has to solve in a first step will be defined on a vector

space instead of on the product of the vector space g
∗ with the homogeneous space

G/G1, which may appear as an advantage; however, the dimension of that vector

space will generally be larger than the dimension of g∗ × (G/G1).

The next Lemma identifies the Hamiltonian vector fields which generate the vector

sub-bundle orthF .

Lemma 10 For each ζ ∈ T ∗G, the fibre of orthF over ζ is the direct sum of

the two vector subspaces of Tζ(T
∗G): the tangent space at ζ to the Φ̂L-orbit of

that point, and the vector subspace made by the values at ζ of the Hamiltonian

vector fields on T ∗G whose Hamiltonian can be written as h ◦ ̟ ◦ πG, where

h : G/G1 → R is a smooth function.

Proof: Since F and orthF are two symplectically complete (in the sense of

P. Libermann [12, 13]) and symplectically orthogonal sub-bundles of T (T ∗G),
each of them is the set of values of Hamiltonian vector fields whose Hamiltoni-

ans are functions constant on the leaves of the foliation determined by the other

one. Therefore orthF is generated by the values of Hamiltonian vector fields

whose Hamiltonians are composed of the map (JL,̟ ◦ πG) with a smooth func-

tion defined on g
∗ × (G/G1). For each ζ ∈ T ∗G, the tangent space at ζ to the
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Φ̂L-orbit of that point and the vertical tangent space (kernel of TζπG) are two com-

plementary vector subspaces of T (T ∗G). The announced result follows from the

facts that Hamiltonian vector fields whose Hamiltonians are composed of JL with

a function defined on g
∗ are tangent to the Φ̂L-orbits, while Hamiltonian vector

fields whose Hamiltonians are composed of ̟ ◦ πG with a function defined on

G/G1 are vertical. �

Lemma 11 Let f ∈ C∞(G/G1,R) be a smooth function. The flow of the Hamil-

tonian vector field whose Hamiltonian is f ◦̟ ◦ πG : T ∗G→ R is

Ψf (t, ζ) = ζ − td(f ◦̟)
(
πG(ζ)

)
.

Proof: The map Ψf : R× T ∗G → T ∗G is the flow of the vertical vector field Zf

on T ∗G whose value at ζ ∈ T ∗G is −d(f ◦̟)
(
πG(ζ)

)
(where the tangent space

at ζ to the fibre T ∗
πG(ζ)G is identified with that vector space). Using the expression

of the Liouville form η and the fact that ωT ∗G = dη, we can write

i(Zf )η = 0 , L(Zf )η = i(Zf )ωT ∗G = −d(f ◦̟ ◦ πG) ,

where L(Zf )η is the Lie derivative of η with respect to Zf . Therefore Zf is a

Hamiltonian vector field, with f ◦̟ ◦ πG as Hamiltonian. �

Lemma 12 The map which associates to each g ∈ G the linear transformation of

C∞(G,R)
f 7→ L∗

g−1(f) = f ◦ Lg−1

is a linear representation of G, which maps onto itself the vector subspace of func-

tions whose restrictions to orbits of Φ̂R
1 are constants.

Proof: This is an immediate consequence of the fact that the actions Φ̂L and Φ̂R

commute. �

Remark 8 The vector space C∞(G/G1,R) can be considered as an infinite-di-

mensional Abelian Lie group. Lemmas 11 and 12 show that G × C∞(G/G1,R)
can be equipped with the structure of a semi-direct product of groups and that it

acts on the symplectic manifold (T ∗G,ωT ∗G) by a Hamiltonian action. The map

defined on T ∗G with values in the product of g∗ with the space of distributions on

G/G1 (in the sense of Laurent Schwartz, i.e., the dual of C∞(G/G1,R))

ζ 7→
(
JL(ζ), δ̟◦πG(ζ)

)
,

where δ̟◦πG(ζ) is the Dirac distribution at ̟ ◦ πG(ζ), can be considered as a mo-

mentum map (in a generalized sense) of that action. This explains why a symmetry
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break in T ∗G often causes the appearance of semi-direct product of groups. In the

next Proposition, we assume that there exists a finite-dimensional vector subspace

V of C∞(G/G1,R) which is mapped onto itself by the linear representation of G
described in Lemma 12 and separates points (i.e., which is such that for any pair

of distinct points in G/G1, there exists at least one function which belongs to that

space and takes different values at these points).

Proposition 13 We assume that there exists a finite-dimensional vector subspace

V of C∞(G/G1,R) which is mapped onto itself by the linear representation of G
described in Lemma 12 and separates points (in the sense explained in Remark 8).

Then there exists a Hamiltonian action of the semi-direct product G × V which

extends the action Φ̂L of G on T ∗G. The momentum map (JL,K) of that action,

which takes its values in g× V ∗, has as first component the momentum map JL of

the action Φ̂L. Its second component K : T ∗G→ V ∗ is given by
〈
K(ζ), f

〉
= f

(
̟ ◦ πG(ζ)

)
, ζ ∈ T ∗G , f ∈ V .

Moreover, (JL,K) is constant on each orbit of the action Φ̂R
1 and the Hamiltonian

H is constant on each level set of (JL,K). If a smooth function h : g∗×V ∗ → R is

such that H = h ◦ (JL,K), (JL,K) maps each integral curve of the Hamiltonian

vector field XH on the symplectic manifold (T ∗G,ωT ∗G) onto an integral curve of

the Hamiltonian vector field Xh on the Poisson manifold g× V ∗.

Proof: The assumption made shows that the semi-direct product of groups struc-

ture which, by Lemma 12 and Remark 8, exists on G× C∞(G/G1,R), as well as

its Hamiltonian action on T ∗G, yield by restriction a semi-direct product of groups

structure onG×V and a Hamiltonian action of that group on T ∗G. The expression

of the momentum map (JL,K) follows from that of generalized momentum map

of the action of C∞(M,R) given in Remark 8. The other assertions come from

the facts that V separates points and that (JL,K) is a Poisson map. �

Remark 9 The map (JL,K) : T ∗G → g× V ∗ may not be surjective. Therefore,

the smooth function h : g × V ∗ → R such that H = h ◦ (JL,K) may not be

unique.

Example The motion of a rigid body with a fixed point considered in Subsec-

tion 3.2 is a system which satisfies the assumption of Proposition 13. For each

configuration of the rigid body, the center of mass of the body lies on a sphere em-

bedded in the physical space E, centered on the fixed point. That sphere realizes

a natural embedding of the homogeneous space G/G1 into E. The 3-dimensional

vector space V of functions on G/G1 is the vector space of linear functions on the

physical space E composed with that natural embedding.
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