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In memory of the French mathematician and physicist Jean-Marie Souriau (1922–2012)

1. Introduction

The French mathematician and physicist Jean-Marie Souriau (1922–2012) consid-
ered, first in [26], then in his book [27], Gibbs states on a symplectic manifold built
with the moment map of the Hamiltonian action of a Lie group, and the associ-
ated thermodynamic functions. In several later papers [28–30], he developed these
concepts and considered their possible applications in Physics and in Cosmology.
A partial translation in English of these papers, made by Frédéric Barbaresco, is
available [7].

Recently, under the name Souriau’s Lie groups thermodynamics, these Gibbs states
and the associated thermodynamic functions were considered by several scien-
tists, notably by Frédéric Barbaresco, for their possible applications in today very
fashionable scientific topics, such as Geometric Information Theory, Deep Learn-
ing and Machine Learning [3–6, 8, 23, 24]. Although including these topics in a
reasearch program seems to be, nowadays, a good way to obtain a public funding,
I am not going to speak about them, since they are far from my field of knowledge.
I will rather stay on Gibbs states and their possible applications in classical and
relativistic Mechanics.
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Long before the works of Souriau, the American scientist Josiah Willard Gibbs
(1839–1903) considered Gibbs states associated to the Hamiltonian action of a Lie
group. In his book [12] published in 1902, he clearly described Gibbs states in
which the components of the total angular momentum (which are the components
of the moment map of the action of the group of rotations on the phase space of
the considered system) appear, on the same footing as the Hamiltonian. He even
considered Gibbs states involving conserved quantities more general than those
associated with the Hamiltonian action of a Lie group. In this domain, Souriau’s
main merits do not lie, in my opinion, in the consideration of Gibbs states for
the Hamiltonian action of a Lie group, but rather in the use of the manifold of
motions of a Hamiltonian system instead of the use of its phase space, and his
introduction, under the name of Maxwell’s principle, of the idea that a symplectic
structure should exist on the manifold of motions of systems encountered as well
in classical Mechanics as in relativistic Physics. He therefore considered Gibbs
states for Hamiltonian actions, on a symplectic manifold, of various Lie groups,
including the Poincaré group, often considered in Physics as a group of symmetries
for isolated relativistic systems. He was well aware of the fact that Gibbs states for
the Hamiltonian action of the full considered groups may not exist, which led him
to carefully discuss the physical meaning and the possible applications of Gibbs
states associated to the action of some of their subgroups.

The present paper is the first of a series of two papers devoted to Gibbs states for
Hamiltonian actions of Lie groups. Section 2 begins with a short history of the
birth of statistical Mechanics, fommowed by a reminder about the use of Hamilto-
nian vector fields in Mechanics and about the Liouville measure on a symplectic
manifold. The concept of statistical state is introduced and its physical meaning
is discussed. The entropy of a continuous statistical state is discussed and related
to Shannon’s entropy of a discrete random variable used in information theory.
Gibbs states in the special case in which the only conserved quantity considered
is the Hamiltonian, and the associated thermodynamic functions, are then briefly
presented. Their physical interpretation as states of thermodynamic equilibrium is
discussed. The relation of the real parameter β used to index statistical states with
the temperature is explained. Section 3 begins with the notion of manifold of mo-
tions of a Hamiltonian dynamical system. Then Gibbs states for the Hamiltonian
action of a Lie group on a symplectic manifold are discussed, with full proofs of
all the stated results. Most of these proofs can be found in Souriau’s book [27],
which some readers may find difficult to access. A good English translation of this
book is available, which faithfully preserves the language and the notations of the
author. We have chosen here to use a language and notations closer to those today
used in differential geometry.
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The companion paper to appear will present several examples of Gibbs states on
various symplectic manifolds on which acts a Lie group, including the Poincaré
disk and the Poincaré half-plane.

2. Some concepts used in statistical mechanics

2.1. The birth of statistical mechanics

In his book Hydrodynamica published in 1738, Daniel Bernoulli (1700–1782) con-
sidered fluids (gases as well as liquids) as made of a very large number of moving
particles. He explained that the pressure in the fluid is the result of collisions of the
moving particles against the walls of the vessel in which it is contained, or against
the probe which measures the pressure.

Daniel Bernoulli’s idea remained ignored by most scientists for more than one
hundred years. It is only in the second half of the XIX-th century that some sci-
entists, notably Rudolf Clausius (1822–1888), James Clerk Maxwell (1831–1879)
and Ludwig Eduardo Boltzmann(1844–1906), considered Bernoulli’s idea as rea-
sonable. As soon as 1857, Clausius began the elaboration of a kinetic theory of
gases aiming at the explanation of macroscopic properties of gases (such as tem-
perature, pressure and other thermodynamic properties), starting from the equa-
tions which govern the motions of the moving particles. Around 1860, Maxwell
determined the probability distribution of the moving particles velocities in a gas in
thermodynamic equilibrium. For a gas not in thermodynamic equilibrium, an evo-
lution equation for the probability distribution of kinematical states of the moving
particles in phase space was obtained by Boltzmann in 1872. He obtained this
now famous equation, today called the Boltzmann equation, by using probabilistic
arguments about the way in which collisions betweeen particles can occur. He in-
troduced a quantity, denoted by the letter H1 which, as a functon of time, always
montonically decreases. Boltzmann’s H function is now identified with the oppo-
site of the entropy of the gas. On this basis, Gibbs laid the foundations of a new
branch of theoretical physics, which he called statistical mechanics [12].

In the first half of the XX-th century, scientists understood that the motions of
molecules in a material body do not perfectly obey Newton’s laws of classical
mechanics, and that the laws of quantum mechanics should be used instead. The
basic concepts of statistical mechanics established by Gibbs were general enough

1In Boltzmann’s mind, this letter was probably the Greek boldface letter Êta rather than the Latin
letter H.
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to remain valid in this new framework, and to be used for liquids or solids as well
as for gases.

2.2. Statistical states and entropy

In this subsection, after a reminder of some well known facts about the use of
Hamiltonian vector fields in classical mechanics and about symplectic manifolds,
the important concept of a statistical state is presented and the definition of its
entropy is given.

2.2.1. The use of Hamiltonian vector fields in classical mechanics

Let us recall how the evolution with time of the state of a material body is mathe-
matically described by a dynamical system, in the framework of classical mechan-
ics. The physical time T is a one-dimensional real, oriented affine space, identified
with R once a unit and an origin of time are chosen. The set of all possible kine-
matic states of the body is a symplectic manifold (M,ω), very often a cotangent
bundle, traditionnaly called the phase space of the system. For an isolated system,
a smooth real-valued function H , defined on M , called a Hamiltonian for the sys-
tem, determines all its possible evolutions with time. Let indeed XH be the unique
smooth vector field, defined on M , which satisfies the equality

i(XH)ω = −dH . (∗)

It is called the Hamiltonian vector field admitting the functionH as a Hamiltonian.
Any possible evolution with time of the system is described by a smooth curve
t 7→ ϕ(t), defined on an open interval in R, with values in M , which is a maximal
integral curve of the differential equation, called Hamilton’s equation, in honour
of the Irish mathematician William Rowan Hamilton (1805–1865),

dϕ(t)

dt
= XH

(
ϕ(t)

)
. (∗∗)

The Hamiltonian H is a first integral of this differential equation : it means that
for each smooth curve t 7→ ϕ(t), solution of this differential equation, H

(
ϕ(t)

)
is

a constant.

More generally, when the system is not isolated, its Hamiltonian H is a smooth
function defined on R × M (or on an open subset of R × M ) since it may de-
pend on time. The Hamiltonian vector field XH which admits such a function as
Hamiltonian is still, for each time t ∈ R, determined by equation (∗) above, in the
righ-hand side of which the differential dH must be calculated, for each t ∈ R, as
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its partial differential with respect to the variable x ∈ M , the time t ∈ R being
considered as fixed. Therefore XH is a time-dependent vector field on M , i.e., a
smooth map, defined on some open subset of R ×M , with values in the tangent
bundle TM , such that for each fixed t ∈ R, the map x 7→ XH(t, x) is an usual
smooth vector field defined on some open subset of M . Any possible evolution
with time of the system is still described by a smooth curve t 7→ ϕ(t), which is a
maximal integral curve of the differential equation (∗∗) above, wich now must be
written as

dϕ(t)

dt
= XH

(
t, ϕ(t)

)
, (∗∗∗)

in order to indicate that XH may depend on t ∈ R as well as on ϕ(t) ∈M . In this
case the Hamiltonian H is no more a first integral of this differential equation.

2.2.2. The Liouville measure on a symplectic manifold

Let (M,ω) be a 2n-dimensional symplectic manifold. Let (U,ϕ) be an admissible
chart of M . For each x ∈M , we set

ϕ(x) = (q1, . . . , qn, p1, . . . , pn) ∈ ϕ(U) ⊂ R2n .

The chart (U,ϕ) is said to be canonical, or to be a Darboux chart, if the local
expression of ω in U is

ω =

n∑
i=1

dpi ∧ dqi .

The local coordinates q1, . . . , qn, p1, . . . , pn in this chart are called canonical co-
ordinates or Darboux coordinates. The famous Darboux theorem, so named in
honour of the French mathematician Gaston Darboux (1842–1917), asserts that
any point in M is an element of the domain of a canonical chart. By using this
theorem, one can prove the existence of a unique positive measure on the Borel
σ-algebra2 of M , called the Liouville measure, in hounour of the French mathe-
matician Joseph Liouville (1809–1882) and denoted by λω, such that for any mea-
surable subset A of M contained in the domain U of a canonical chart (U,ϕ) of
M , such that ϕ(A) is a bounded subset of R2n,

λω(A) =

∫
ϕ(A)

dq1 . . . dqndp1 . . . dpn .

The Liouville measure is invariant by symplectomorphisms, which means that its
direct image Φ∗λω by any symplectomorphism Φ : M →M is equal to λω.

2The Borel σ-algebra of a topological spaceM is the smallest family of subsets ofM which con-
tains all open subsets and is stable by complementation and by intersections of countable subfamilies.
It is so named in honour of the French mathematician Émile Borel (1871–1956).
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2.2.3. Definitions

Let (M,ω) be a symplectic manifold and λω its Liouville measure.

1. A statistical state on M is a probability measure µ on the Borel σ-algebra of
M . The statistical state µ is said to be continuous (respectively, smooth) when
it can be written as µ = ρλω, where ρ is a continuous function (respectively, a
smooth function) defined on M . The function ρ is then said to be the probability
density (or simply the density) of the statistical state µ with respect to λω.

2. Let µ be a statistical state on M and f be a function, defined on M , which
takes its values in R or in a finite-dimensional vector space. When f is integrable
onM with respect to the measure µ, its integral is called the mean value of f in the
statistical state µ, and denoted by Eµ(f). When the statistical state µ is continuous,
with the continuous function ρ as probability density with respect to λω, the mean
value of f in the statistical state µ is, by a slight abuse of notations, denoted by
Eρ(f). Its expression is

Eρ(f) =

∫
M
f(x)ρ(x)λω(dx) .

2.2.4. Comments about the use of statistical states

When the considered dynamical system, determined by the Hamiltonian vector
field XH , is made of a large number N of moving particles, the dimension of the
symplectic manifold (M,ω) which represents the set of all its possible kinematic
states is very large : at least 6N , and even more when the particles are not treated
as material points. A perfect knowledge of each element of M is not possible,
which explains the use of statistical states in classical Mechanics. In this frame-
work, when the state of the considered system at a given time t0 is mathematically
described by a statistical state µ, it means that instead of looking at the evolution
in time of a unique system whose kinematical state at time t0 is a given element
x0 ∈ M , one is going to look at the evolution in time of a whole family of similar
systems. The evolution with time of each of these systems is described by the dif-
ferential equation determined by XH , and its kinematical states at time t0 can be
any point in the support3 of µ.

When, instead of classical mechanics, quantum mechanics is used for the math-
ematical description of the evolution with time of the state of a physical system,

3The support of a measure µ defined on the Borel σ-algebra of a topological stateM is the closed
subset of M , complementary to the open subset made by points contained in an open subset U of M
such that µ(U) = 0.
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the use of statistical states is not due to an imperfect knowledge of the initial state
of the system : it is mandatory. Informations about the evolution with time of the
state of a system given by quantum mechanics are indeed always probabilistic. By
nature, quantum mechanics is always statistical.

2.2.5. Examples

1. Let x1 , x2 , . . . , xN be N pairwise distinct points in M , and k1 , k2 , . . . , kN
be real numbers satisfying ki > 0 for all i ∈ {1, . . . , N} and

∑N
i=1 ki = 1. For

each i ∈ {1, . . . , N}, let δxi be the Dirac measure at xi, whose value δxi(A) for
a measurable subset A of M is 0 when xi /∈ A and 1 when xi ∈ A. The measure
µ =

∑N
i=1 kiδxi is a statistical state, which is neither continuous, nor smooth. The

mean value of a function f in the statistical state µ is
∑N

i=1 kif(xi).

For each i ∈ {1, . . . , N}, the measure δxi is a statistical state in which the kine-
matical state of the system is the point xi, with a probability 1. One can say that
δxi is a state in the usual sense. In the statitical state µ, the kinematical state of the
system is a random variable which can take each value xi with the probability ki.

2. Still under the same assumptions, for each i ∈ {1, . . . , N}, let Ui be a neigh-
bourhood of xi and ϕi be a positive valued, smooth function, with compact sup-
port contained in Ui, satisfying the equality

∫
M f(x)λω(dx) = 1. The measure

ν whose probability density with respect to the Liouville measure λω is ρν =∑N
i=1 kiϕi is a smooth statistical state, which can be considered as a smooth ap-

proximation of the discrete statistical state µ considered above. Such smooth ap-
proximations of non-smooth statistical states were extensively used by the founder
of geostatistics, the French mathematician and geologist Georges Matheron (1930–
2000) [22] .

2.2.6. Remark

Let µ be a continuous statistical state on the symplectic manifold (M,ω) and ρ its
probability density with respect to the Liouville measure λω. For each measurable
subset A of M , we have

µ(A) =

∫
A
ρ(x)λω(dx) , so for A = M , µ(M) =

∫
M
ρ(x)λω(dx) = 1 .

The function ρ therefore takes its values in R+ and is integrable onM with respect
to the Liouville measure.
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2.2.7. Evolution with time of a statistical state

Let (M,ω) be a symplectic manifold, H ∈ C∞(M,R) be a smooth Hamiltonian
onM which does not depend on time andXH be the associated Hamiltonian vector
field on M . We denote by ΦXH the reduced flow4 of XH . If, at a time t0, the state
of the dynamical system described by XH is a perfectly defined point x0 ∈ M ,
the state of the system, at any other time t1 at which it exists, is the point x1 =

ΦXH
t1−t0(x0).

Let us assume that µ(t0) is the statistical state of such a system at a given time
t0. We assume, for simplicity, that µ(t0) is smooth and we denote by ρ(t0) its
probability density with respect to the Liouville measure λω. Let t1 be another
time at which the considered system still exists. The reduced flow ΦXH of the
Hamiltonian vector field XH is such that ΦXH

t1−t0 is a symplectic diffeomorphism
of an open subset of M onto another open subset of this manifold, whose inverse
is ΦXH

t0−t1 . The statistical state of the system at time t1 is therefore smooth, with a
probability density ρ(t1) with respect to λω, related to ρ(t0) by the equation

ρ(t1) = ρ
(
t0) ◦ ΦXH

t0−t1 .

In other words, for any x ∈M ,

ρ(t1, x) = ρ
(
t0,Φ

XH
t0−t1(x)

)
.

2.2.8. Definition

Let ρ be the probability density, with respect to the Liouville measure λω, of a
continuous statistical state on the symplectic manifold (M,ω). The entropy of this
statistical state, denoted by s(ρ), is defined as follows. With the convention that

when x ∈M is such that ρ(x) = 0, we set log

(
1

ρ(x)

)
ρ(x) = 0, we can consider

x 7→ log

(
1

ρ(x)

)
ρ(x) as a continuous function well defined on M , taking its

4The full flow, or in short the flow, of a smooth vector fieldX , which may depend on time, defined
on R×M (or on an open subset of R×M ) is the map ΨX , defined on an open subset of R×R×M ,
taking its values in M , such that for each t0 ∈ R and each x0 ∈ M , the maximal solution ϕ of the
differential equation determined by X which satisfies ϕ(t0) = x0 is the map t 7→ ΨX(t, t0, x0).
When X does not depend on time, ΨX(t, t0, x0) only depends on t − t0 and x0. So instead of
the full flow ΨX , one can use the reduced flow ΦX , defined on an open subset of R ×M by the
equality ΦX(t, x0) = ΨX(t, 0, x0). One often write ΦXt (x0) to emphasize the fact that ΦXt is a
diffeomorphism between two open subsets of M .
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values in R. When this function is integrable on M with respect to the Liouville
measure λω, we set

s(ρ) =

∫
M

log

(
1

ρ(x)

)
ρ(x)λω(dx) = −

∫
M

log
(
ρ(x)

)
ρ(x)λω(dx) .

Otherwise, we set
s(ρ) = −∞ .

The map ρ 7→ s(ρ) so defined on the set of all continuous probability densities on
M is called the entropy functional.

2.2.9. Comments about entropy

1. The concept of entropy is due to Rudolf Clausius, who used it to formulate
precisely the second principle of thermodynamics.

2 The entropy of a real system in Physics is always positive. The third law of
thermodynamics states that the entropy of a system in thermodynamic equilibrium,
when its state of minimal energy is unique, decreases towards 0 when its absolute
temperature decreases towards 0 degree Kelvin. Physicists therefore consider as an
unacceptable anomaly the fact that the entropy functional can take negative values,
and are scandalized at the sight of −∞ as a possible value of entropy. Indeed,
such a value is in clear conflict with Heisenberg’s principle of uncertainty. The von
Neumann entropy5, used in quantum statistical mechanics, is always positive, and
the entropy defined in 2.2.8 is only its imperfect classical approximation.

3. In his famous paper [25], written during the second world war and published in
1948, the American mathematician, electrical engineer and cryptographer Claude
Elwood Shannon (1916–2001) laid the foundations of information theory. He de-
fined in this paper a concept of entropy whose opposite can be used as measurement
of the information contained in a message, and considered its evolution when the
message is transmitted through a telecommunications channel. Curiously enough,
by reference to Boltzmann’s works, the notation he used for his entropy is the letter
H , although he observed that his entropy’s expression is similar to the expression
of the opposite of Boltzmann’s H-function. For a random variable X which can
takeN possible values xi, repectively with the probabilities ki6 (1 ≤ i ≤ n), the ki

5In quantum statistical mechanics, the von Neumann entropy of a state mathematically described
by a density matrix ρ is the trace of −ρ ln ρ. It was defined and extensively used by the Hungarian-
American universal scientist John von Neumann (1903–1957).

6The notation used by Shannon for the probability of xi is pi, 1 ≤ i ≤ N . Here I use ki instead
to avoid any risk of confusion with the Darboux coordinates pi in a canonical chart of a symplectic
manifold.
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satisfying ki ≥ 0 and
∑N

i=1 ki = 1, Shannon defined its entropy H(X) by stating

H(X) =

N∑
i=1

log

(
1

ki

)
ki = −

N∑
i=1

(log ki)ki ,

with the usual convention 0 log 0 = 0. In Appendix 2 of his above cited paper, page
49, he proved that up to multiplication by a strictly positive constant, his entropy is
the only function which satisfies the following three very reasonable requirements.

• The function H must continuously depend on the probabilities ki, 1 ≤ i ≤
N .

• When the ki are all equal to 1/N the function N 7→ H(1/N, . . . , 1/N) (N
terms) must increase monotonically with N .

• When some possible values of the random variable X are obtained as the
result of two successive choices, the value of H(X) must be equal to the
weighted sum of the individual values of H . For example, for a random
variable X with the three possible values : x1 with probability k1 = 1/2, x2
with probability k2 = 1/3 and x3 with probability k3 = 1/6, the values x1,
x2 and x3 can be obtained in two steps. In the first step, a first trial is done in
which one looks at the value taken by a random variable Y with two possible
values, y1 and y2, both obtained with probability 1/2. In the second step, if
the value taken by Y is y1, one states that the value taken by X is x1; if the
value taken by Y is y2, one looks at the value taken by a random variable
Z with two possible values, z1 with probability 2/3 and z2 with probability
1/3. If the value taken by Z is z1, one states that the value taken by X is x2,
and if the value taken by Z is z2, one states that the value taken by X is x3.
The equality that the function H is required to satisfy is

H

(
1

2
,
1

3
,
1

6

)
= H

(
1

2
,
1

2

)
+

1

2
H

(
2

3
,
1

3

)
.

Interested readers are referred to Alain Chenciner’s paper [10] for a more detailed
account of Claude Shannon’s works and their influence on today’s science.

4. The American physicist Edwin Thompson Jaynes (1922–1998) observed, in
[15, 16] (see also [31]), that the definition 2.2.8 of entropy for a continuous statis-
tical state of probability density ρ with respect to the Liouville measure,

s(ρ) =

∫
M

log

(
1

ρ(x)

)
ρ(x)λω(dx) = −

∫
M

log
(
ρ(x)

)
ρ(x)λω(dx) ,
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is not a correct adaptation of Shannon’s entropy for a discrete statistical state which
can take N distinct values xi, with the respective probabilities ki,

H(X) = −
N∑
i=1

(log ki)ki , with ki ≥ 0 for all i ∈ {1, . . . , N} and
N∑
i=1

ki = 1 .

WhileH(X) is always a dimensionless number satisfyingH(X) ≥ 0, andH(X) =
0 if and only if there exists only one integer i ∈ {1, . . . , N} such that ki = 1, all
other kj , fo j 6= i, being equal to 0, the above expression of s(ρ) depends on the
chosen units. Indeed in this expression, while ρ(x)λω(dx) is dimensionless, ρ(x),
as well as λω(dx) are not dimensionless. A change of the units (of length, time
and mass) changes the value of the the term log

(
ρ(x)

)
by addition of a constant,

which can be either positive or negative. Therefore when one uses definition 2.2.8,
the sign of entropy does not have any physical meaning. In the above cited papers
of Jaynes, the author considered problems in statistics more general than those en-
countered in classical statistical mechanics, in which the Liouville measure may
not be available. He proposed to replace, in the expression of the entropy s(ρ),

the term log

(
1

ρ(x)

)
by log

(
m(x)

ρ(x)

)
, where m(x) is the probability density of a

reference statistical state with respect to which the entropy s(ρ) is evaluated. Of
course the probability densities m(x) and ρ(x) must be taken with respect to the
same measure. In the framework of classical statistical mechanics, this measure is
the Liouville measure λω, so the correction proposed by Jaynes can be written

sJaynes(ρ) =

∫
M

log

(
m(x)

ρ(x)

)
ρ(x)λω(dx) .

Probably because he considered problems in which the Liouville measure did
not appear, Jaynes did not clearly state how m(x) should be chosen, although
he recommanded the use of a probability density invariant by the group of au-
tomorphisms of the considered measurable space. Therefore it seems that in the
framework of classical statistical mechanics, when the support W of ρ7 is of finite
λω-measure, one should use the following probability density :

m(x) =


1

λω(W )
when x ∈W,

0 when x /∈W.

With this choice of m, s(ρ) and sJaynes(ρ) are related by

sJaynes(ρ) = s(ρ)− log
(
λω(W )

)
.

7The support of ρ is the closure of the subset of M made of points x ∈M such that ρ(x) 6= 0.
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The corrected entropy sJaynes(ρ) proposed by Jaynes is dimensionless. It differs
from the entropy s(ρ) of Definition 2.2.8 only by a constant, which depends on the
units chosen for time, length and mass, and can take negative as well as positive
values.

In calculus of variations, it may be useful to consider infinitesimal variations of ρ
whose support does not always remain contained in the support of ρ. Instead of the
support of ρ, one should take for W , in the above formula, an open subset of M of
finite λω-measure which contains the support of ρ.

5. For a better understanding of how the entropies of continuous and discrete
statistical states are related, let us consider the process of discretization of a con-
tinuous statistical state. As above, we assume that the support W of the proba-
bility density ρ is of finite λω-measure. For simplicity8, we moreover assume that
ρmax = supx∈M ρ(x) too is finite and that, for each real r satisfying 0 ≤ r ≤ ρmax,

λω

({
x ∈W

∣∣ ρ(x) = r
})

= 0 .

For each r ≥ 0, let us set

G(r) = λω

({
x ∈W

∣∣ 0 ≤ ρ(x) ≤ r
})

.

Then G is a continuous and monotonically increasing function which takes all
values in the closed interval [0, λω(W )]. Let N be an integer satisfying N > 2.
There exist N real numbers rNi , 1 ≤ i ≤ N , such that for each i ∈ {1, . . . , N}

G(rNi ) =
iλω(W )

N
.

We set
V N
1 =

{
x ∈W

∣∣ 0 ≤ ρ(x) ≤ r1
}
,

and, for each i ∈ {2, . . . , N},

V N
i =

{
x ∈W

∣∣ ri−1 < ρ(x) ≤ ri
}
.

The V N
i are measurable subsets of M which satisfy, for 1 ≤ i, j ≤ N ,

λω(V N
i ) =

λω(W )

N
, V N

i ∩ V N
j = ∅ if i 6= j ,

N⋃
i=1

V N
i = W .

8These assumptions could probably be avoided with the use of more sophisticated concepts in
integration theory, such as the Stieltjes integral, so named in honour of the Dutch mathematician
Thomas Joannes Stieltjes (1856–1892).
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Now we set, for each i ∈ {1, . . . , N},

kNi =

∫
V Ni

ρ(x)λω(dx) , ρNi =
NkNi
λω(W )

.

We have

0 ≤ kNi ≤ 1 for each i ∈ {1, . . . , N} ,
N∑
i=1

kNi = 1 .

Let ρN be the function defined on M by

ρN (x) =


NkNi
λω(W )

if x ∈ V N
i , 1 ≤ i ≤ N ,

0 if x /∈
⋃N
i=1 V

N
i = W .

The function ρN is everywhere ≥ 0 on M , and only takes N distinct non-zero
values. It is a discrete approximation of the probability density ρ, which satisfies∫

M
ρN (x)λω(dx) =

N∑
i=1

kNi = 1 .

The function ρN is therefore the probability density of a statistical state on M .
Although it is not continuous, we can use Definition 2.2.8 to calculate s(ρN ). We
obtain

s(ρN ) =
N∑
i=1

kNi (− log kNi ) + log
(
λω(W )

)
− logN .

We observe that the term
∑N

i=1 ki(− log ki) is the Shannon entropy H(XN ) of
a random variable XN wich can take N distinct values, for example the values
1, . . . , N , with the respective probabilities kN1 , . . . , k

N
N . So we can write

H(XN ) = s(ρN )− log
(
λω(W )

)
+ logN = sJaynes(ρ

N ) + logN .

When N → +∞, sJaynes(ρN ) → sJaynes(ρ) and logN → +∞. The above
equality proves that when N → +∞, the Shannon entropy of the discrete approx-
imation, by a random variable XN which can take N distinct non-zero values, of
the continuous statistical state of probability density ρ, does not remain bouded
and increases as fast as logN .

6. During the years 1950–1960, several scientists, notably Edwin Thompson
Jaynes cited above (see also [13, 14] by the same author) and the American math-
ematician George Whitelaw Mackey (1916–2006) [17], proposed the use of infor-
mation theory in thermodynamics.
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Interested readers are referred to Roger Balian’s paper [1], in which they will find
a clear account of the use of probability concepts in physics and of information
theory in quantum mechanics.

2.2.10. Proposition

On a symplectic manifold (M,ω), we consider a smooth HamiltonianH ∈ C∞(M,R)
which does not depend on time. LetXH be the associated Hamiltonian vector field
on M . Let ρ(t0) be the probability density of a smooth statistical state of the dy-
namical system determined by XH at a time t0. The probability density ρ(t1) of
the statistical state of the system at any other time t1 at which the system still exists
is such that

s
(
ρ(t1)

)
= s
(
ρ(t0)

)
.

In other words, the entropy of the statistical state of the system remains constant
as long as this statistical state exists.

Proof: As seen in 2.2.7, ρ(t1) = ρ(t0) ◦ ΦXH
t0−t1 , so for each x ∈M ,

ρ(t0, x) = ρ
(
t1,Φ

XH
t1−t0(x)

)
.

When s
(
ρ(t0)

)
6= −∞, we can write

s
(
ρ(t0)

)
=

∫
M

log

(
1

ρ(t0, x)

)
ρ(t0, x)λω(dx)

=

∫
M

log

(
1

ρ
(
t1,Φ

XH
t1−t0(x)

)) ρ(t1,ΦXH
t1−t0(x)

)
(λω)(dx)

=

∫
M

log

(
1

ρ(t1, y)

)
ρ(t1, y)(ΦXH

t1−t0)∗(λω)(dy)

=

∫
M

log

(
1

ρ(t1, y)

)
ρ(t1, y)λω(dy)

= s
(
ρ(t1)

)
,

where we have used the change of integration variable y = ΦXH
t1−t0(x) and the in-

variance of the Liouville measure by symplectomorphism (2.2.2). When s
(
ρ(t0)

)
=

−∞, the same calculation leads to a divergent integral for the expression of s
(
ρ(t1)

)
,

which therefore is equal to −∞. �
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2.3. Gibbs states for a Hamiltonian system

In this subsection, H is a smooth Hamiltonian which does not depend on time,
defined on a symplectic manifold (M,ω), and XH is the associated Hamiltonian
vector field. The Gibbs states defined here are built with the Hamiltonian H as the
only conserved quantity. Their main properties are briefly indicated. Gibbs state
for the Hamiltonian action of a Lie group are considered in Section 3.

2.3.1. Proposition

Under the assumptions and with the notations of Subsection 2.3, let ρ be the prob-
ability density, with respect to the Liouville measure λω, of a smooth statistical
state on M . We assume that ρ is such that the integrals which define the entropy
s(ρ) (Definition 2.2.8) and the mean value Eρ(H) of the Hamiltonian H (Defini-
tion 2.2.3) are convergent and can be differentiated under the sign

∫
with respect

to infinitesimal variations of ρ. The entropy function s is stationary at ρ with re-
spect to smooth infinitesimal variations of ρ which leave fixed the mean value of H
if and only if there exists a real β ∈ R such that, for every x ∈M ,

ρ(x) =
1

P (β)
exp
(
−βH(x)

)
, with P (β) =

∫
M

exp
(
−βH(x)

)
λω(dx) .

Proof: Let τ 7→ ρτ be a smooth infinitesimal variation of ρ which leaves fixed

the mean value of H . Since
∫
M
ρτ (x)λω(dx) and

∫
M
ρτ (x)H(x)λω(dx) do not

depend on τ , it satisfies, for all τ ∈]− ε, ε[ ,∫
M

∂ρ(τ, x)

∂τ
λω(dx) = 0 ,

∫
M

∂ρ(τ, x)

∂τ
H(x)λω(dx) = 0 .

Moreover an easy calculation leads to

ds(ρτ )

dτ

∣∣∣
τ=0

= −
∫
M

∂ρ(τ, x)

∂τ

∣∣∣
τ=0

(1 + log
(
ρ(x)

)
λω(dx) .

By a well known result in calculus of variations, this implies that the entropy func-
tional is stationary at ρ with respect to smooth infinitesimal variations of ρ which
leave fixed the mean value of H , if and only if there exist two real constants α and
β, the Lagrange multipliers, such that, for every x ∈M ,

1 + log(ρ(x)) + α+ βH(x) = 0 ,

which leads to
ρ(x) = exp

(
−1− α− βH(x)

)
.
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By writing that
∫
M
ρ(x)λω(dx) = 1, we see that α is determined by β:

exp(1 + α) = P (β) =

∫
M

exp
(
−βH(x)

)
λω(dx) .

�

2.3.2. Definition

Let β ∈ R be a real which satisfies the conditions of Proposition 2.3.1. The smooth
statistical state whose probability density, with respect to the Liouville measure λω,
is

ρβ(x) =
1

P (β)
exp
(
−βH(x)

)
, x ∈M ,

with

P (β) =

∫
M

exp
(
−βH(x)

)
λω(dx) ,

is called the Gibbs state associated to (or indexed by) β. The function P of the real
variable β is called the partition function of the dynamical system determined by
the Hamiltonian vector field XH .

2.3.3. Proposition

Let β ∈ R be a real which satisfies the conditions of Proposition 2.3.1. The prob-
ability density ρβ of the corresponding Gibbs state (Definition 2.3.2) remains in-
variant under the flow of the Hamiltonian vector field XH .

Proof: Since the Hamiltonian H does not depend on time, it is a first integral of
the differential equation determined by XH , i.e., it keeps a constant value on each
integral curve of XH . Therefore ρβ keeps a constant value on each integral curve
of XH . �

2.3.4. Some properties of Gibbs states

We have seen (Proposition 2.3.1) that the entropy functional s is stationary at each
Gibbs state with respect to all infinitesimal variations of its probability density
which leave invariant the mean value of the Hamiltonian H . A stronger result
holds: given any Gibbs state of probability density ρβ , on the set of all continuous
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statistical states whose probability density ρ is such that Eρ(H) = Eρβ (H), the en-
tropy functional s reaches its only strict maximum at the Gibbs state of probability
density ρβ .

When the set Ω of reals β for which a Gibbs state indexed by β exists is not empty,
this set is an open interval ] a, b [ of R, where either a ∈ R, or a = −∞, either
b ∈ R and b > a, or b = +∞. When in addition H is bounded from below, i.e.,
when there exists m ∈ R such that, for any x ∈ M , m ≤ H(x), the open interval
Ω is unbound on the right side, i.e., Ω = ] a,+∞ [ where either a ∈ R, or a = −∞.

We have already defined on Ω the partition function P (Definition 2.3.2). Other
functions can be defined on Ω as follows. For each β ∈ Ω, the entropy s(ρβ) exists
of course, and one can prove that the mean value Eρβ (H) (Definition 2.2.3) of the
Hamiltonian H , in the Gibbs state indexed by β, exists too, as well as Eρβ (H2)

and Eρβ
((
H − Eρβ (H)

)2). So we can set

S(β) = s(ρβ) , E(β) = Eρβ (H) , β ∈ Ω .

The functions P (partition function), E (mean value of the Hamiltonian, consid-
ered by physicists as the energy) and S (entropy) so defined are of class C∞ on Ω
and satisfy, for any β ∈ Ω,

P (β) > 0 ,

E(β) = − 1

P (β)

dP (β)

dβ
=

d
(
− logP (β)

)
dβ

,

dE(β)

dβ
=

d2
(
− logP (β)

)
dβ2

= −Eρβ
((
H − Eρβ (H)

)2)
,

S(β) = logP (β) + βE(β) = β
d
(
− logP (β)

)
dβ

−
(
− logP (β)

)
,

dS(β)

dβ
= β

dE(β)

dβ
.

The above expression of
dE(β)

dβ
proves that β 7→ E(β) is a non-increasing func-

tion. When the Hamiltonian H is not a constant, for each β ∈ Ω, the continuous
function defined on M x 7→

(
H(x) − Eρβ (H)

)2 takes its values in R+ and is not

always equal to 0. Its mean value Eρβ
((
H − Eρβ (H)

)2) is therefore > 0, which
proves that β 7→ E(β) is a strictly decreasing function on Ω. The map E is open,
and is a diffeomorphism of Ω onto its image Ω∗.
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The above expression of S(β) shows that the functions β 7→ − log
(
P (β)

)
and

β 7→ S(b) are Legendre transforms of each other9. They are indeed linked by
the same relation as that which, in calculus of variations, links a hyper-regular La-
grangian with the associated energy. Here the hyper-regular “Lagrangian”, defined
on Ω, is β 7→ − logP (β), the Legendre map is the diffeomorphism E : Ω → Ω∗,
the “energy”, defined on Ω, is β 7→ S(β), and the “Hamiltonian”, defined on Ω∗,

is S ◦ E−1. By using the above expression of
dS(β)

dβ
, we can write

E−1(e) =
d
(
S ◦ E−1(e)

)
de

, e ∈ Ω∗ .

As soon as 1869, the Legendre transform was used in thermodynamics by the
French scientist François Massieu [2, 19–21].

The results stated here without proof are proven below, in a more general setting,
for Gibbs states associated to the Hamiltonian action of a Lie group (Propositions
3.1.3 and 3.3.6, Remarks 3.2.5).

2.3.5. Gibbs states, temperatures and thermodynamic equilibria

Let us now assume that the dynamical system determined by the Hamiltonian vec-
tor fieldXH mathematically describes the evolution with time of a physical system,
an object of the real world. Physicists consider each Gibbs state of the considered
dynamical system, indexed by some β ∈ R, as the mathematical description of a
state of thermodynamic equilibrium of the corresponding physical system, and β
as a quantity related to the absolute temperature T of the physical system by the
equality

β =
1

kT
, (∗)

where k is a constant which depends on the chosen units, called Boltzmann’s con-
stant. This identification of Gibbs states with thermodynamic equilibria is justified
by the following property. Let us consider two similar physical systems, math-
ematically described by two Hamiltonian systems, whose Hamiltonians are, re-
spectively, H1 defined on the symplectic manifold (M1, ω1) and H2 defined on
the symplectic manifold (M2, ω2). We first assume that they are independent and
both in a Gibbs state. We denote by ρ1,β1 and ρ2,β2 the probability densities of
the Gibbs states, indexed by the reals β1 and β2, in which these two systems are,
respectively. Let E1(β1) and E2(β2) be the corressponding mean values of their

9The Legendre transform is so named in honour of the French mathematician Adrien-Marie Leg-
endre (1752–1833).
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Hamiltonians. Let us now assume that the two systems are coupled in a way al-
lowing an exchange of energy between them. For example, the corresponding
objects of the real world can be two vessels containing a gas, separated by a wall
allowing a transfer of heat between them. Coupled together, they make a new
physical system, mathematically described by a Hamiltonian system on the sym-
plectic manifold (M1×M2, ωnew = p∗1ω1 + p∗2ω2), where p1 : M1 ×M2 →M1

and p2 : M1 ×M2 → M2 are the canonical projections. The Hamiltonian of this
new system can be made as close to H1 ◦ p1 + H2 ◦ p2 as one wishes, by mak-
ing very small the coupling between the two systems. We can therefore consider
H1 ◦ p1 + H2 ◦ p2 as a reasonable approximation of the Hamiltonian of the new
system. When the two subsystems are in the Gibbs states indexed, respectively,
by β1 and by β2, the new system made of these two coupled subsystems is in the
statistical state of probability density ρ1,β1 ◦ p1 + ρ2,β2 ◦ p2, and its entropy is
S1(β1) + S2(β2). If β1 6= β2, the new system is not in a Gibbs state. Let us in-
deed assume, for example, that β1 < β2. If a transfer of energy between the two
subsystems occurs, in which the energy of the first subsystem decreases while the
energy of the second subsystem increases by an equal amount, the modified Gibbs
state of the first subsystem becomes indexed by β′1 > β1 and that of the second
subsystem by β′2 < β2 since, as seen in 2.3.4, for i = 1 as well as for i = 2,

we have
dEi(β

′
i)

dβ′i
< 0. As long as β′1 < β′2, such an energy transfer between the

two subsystems results in an increase of the entropy of the total new system, until
β′1 = β′2 = βn, which indexes the Gibbs state of the new system for a mean value
of its Hamiltonian E1(β1) + E2(β2). We have of course β1 < βn < β2, which
proves that when the state of the new system evolves from its initial state towards
its Gibbs state, the energy flow goes from the subsystem whose Gibbs initial state
is indexed by the smaller β1 towards the subsystem whose initial Gibbs sate in in-
dexed by the larger β2. This result is in agreement with everydays’s experience,
since equality (∗) implies that when β > 0, a smaller value of β corresponds to a
higher temperature.

2.3.6. Evolution towards a thermodynamic equilibrium

In the real world, the state of an approximately isolated system often evolves with
time towards a state of thermodynamic equilibrium. When such a state is approxi-
mately reached, it remains approximately stationary, with small fluctuations. Let us
mathematically modelize this evolution as the variation with time of the statistical
state of a Hamiltonian dynamical system, whose smooth Hamiltonian H is defined
on a very high-dimensional symplectic manifold (M,ω). Proposition 2.3.3 above,
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which states that Gibbs states do not change with time, seems to be in reasonably
good agreement with the identification of Gibbs states with thermodynamic equi-
libria, although it does not explain fluctuations which are experimentally obseved
in thermodynamic equilibria. On the contrary, proposition 2.2.10 above, which
states that as long as any smooth statistical state exists, its entropy remains con-
stant, is in clear disagreement with the behaviour of isolated systems in the real
world. The mathematical description of the evolution with time of a real physical
system by the dynamical system determined by the Hamiltonian vector field of a
smooth Hamiltonian which does not depend on time, together with Definition 2.2.8
of the entropy, can be used only for reversible systems. It cannot be used to de-
scribe the evolution with time of some statistical states towards the corresponding
Gibbs state.

3. Gibbs states for Hamiltonian actions of Lie groups

The general definition of a Gibbs states is very natural : it amounts to introduce, in
the definition of a statistical state, not only the Hamiltonian, but other conserved
quantities too, on the same footing as the Hamiltonian. One may even forget the
Hamiltonian and consider only the moment map of the Hamiltonian action.

This idea is already present in the book published by Gibbs in 1902 ( [12], chap-
ter I, page 42 and the following pages), the conserved quantities other than the
Hamiltonian being the components of the total angular momentum.

Following an idea first proposed around 1809 by Joseph Louis Lagrange (1736–
1813), Jean-Marie Souriau defined statistical states on the manifold of motions of
a Hamiltonian dynamical system, instead of on its phase space. This approach
allows a more natural treatment on the same footing of both the Hamiltonian and
other conserved quantities, because the action of the group of translations in time,
which may act only locally on the phase space, always acts globally on the space
of motions. The concept of manifold of motions and its properties are presented
in Subsection 3.1 below. Gibbs states for a Hamiltonian action of a Lie group on
a symplectic manifold are then defined (Definition 3.1.4), together with general-
ized temperatures and partition functions, and their main property (maximality of
entropy) is proven (Proposition 3.1.6). Thermodynamic functions associated to a
Gibbs state (mean value of the moment map and entropy) are maps defined on the
set of generalized temperatures (Subsection 3.2). The expressions of their differen-
tials lead to the definition, on the set of generalized temperatures, of a remarkable
Riemannian metric, linked to the Fisher-Rao metric of statisticians. The adjoint
action on the set of generalized temperatures is considered in Subsection 3.3, in
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which the Riemannian metric induced on each adjoint orbit is expressed in terms
of a symplectic cocycle.

3.1. Symmetries and statistical states

In this subsection we consider the dynamical system determined on a symplectic
manifold (M,ω), as explained in 2.2.1, by a Hamiltonian vector field XH whose
smooth Hamiltonian H , defined on R × M or on one of its open subsets, may
depend on time.

3.1.1. The manifold of motions of a Hamiltonian system

Jean-Marie Souriau called motion of the dynamical system determined by a Hamil-
tonian vector field XH any maximal solution ϕ : t 7→ ϕ(t) of Hamilton’s differen-
tial equation

dϕ(t)

dt
= XH

(
t, ϕ(t)

)
.

The manifold of motions of the system, denoted by Mot(XH), is simply the set of
all motions, i.e., the set of all maximal solutions ϕ of the above differential equa-
tion. It always has the structure of a smooth symplectic manifold. For each t0 ∈ R,
the map ht0 which associates, to each motion ϕ : t 7→ ϕ(t) whose interval of defi-
nition contains t0, the point ht0(ϕ) = ϕ(t0) ∈M , is indeed, when the subset made
of motions defined on an interval of R which contains t0 is not empty, a bijection
of this subset of Mot(XH) onto an open subset of M . This simple fact allows
the definition of a topology and a structure of smooth manifold on Mot(XH) such
that, for each t0 ∈ R, ht0 : ϕ 7→ ht0(ϕ) = ϕ(t0) is a diffeomorphism of the open
subset of Mot(XH) made of motions defined on an interval of R which contains
t0, onto an open subset of M . Since the reduced flow of XH is made of sym-
plectomorphisms, the pull-back h∗t0ω of the symplectic form ω does not depend on
t0, therefore determines globally a symplectic form ωMot(XH) on the manifold of
motions Mot(XH).

The manifold Mot(XH) may be a non-Hausdorff 10 manifold, although any of
its elements has an open Hausdorff neighbourhood symplectomorphic to an open
subset of M .

10We recall that a topological space is said to be Hausdorff when for each pair of distinct elements
x and y of this space, there exist neighbourhoods U of x and V of y such that U ∩ V = ∅. This
property is so named in honour of the German mathematician Felix Hausdorff (1848–1942), an
important founder of topology and set theory, who after losing his Professor position at the university
of Bonn, was driven to suicide by the Nazi regime.
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We assume now, until the end of this section, that the Hamiltonian H does not
depend on time. For a given motion ϕ ∈ Mot(XH), the value of H

(
ϕ(t0)

)
does

not depend on the choice of t0 in the interval on which ϕ is defined. Therefore there
exists a real-valued, smooth function HMot, defined on Mot(XH), such that, for
each ϕ ∈ Mot(XH) and any t0 in the interval on which ϕ is defined, HMot(ϕ) =
H
(
ϕ(t0)

)
. Since, for each t0 ∈ R, the function HMot, restricted to the open

subset made of motions whose interval of definition contains t0, is the pull-back
h∗t0(H) = H ◦ ht0 of the Hamiltonian H , the Hamiltonian vector field XHMot

on Mot(XH), restricted to this open substet of Mot(XH), is the inverse image
h∗t0(XH) of the Hamiltonian vector field XH defined on M .

For any s ∈ R and any motion ϕ : ] a, b [→ M ∈ Mot(XH), defined on the inter-
val ] a, b [⊂ R, let ΦMot(s, ϕ) be the parametrized curve, defined on the interval
] a− s, b− s [⊂ R, with values in M ,

ΦMot(s, ϕ)(t) = ϕ(t+ s) , t ∈ ] a− s, b− s [ .

One can easily see that ΦMot(s, ϕ) ∈ Mot(XH) and that the map

ΦMot : R×Mot(XH)→ Mot(XH)

is a smooth action on the left of the additive Lie group R on the manifold of mo-
tions Mot(XH). The infinitesimal generator of this action is the vector field on
Mot(XH), temporarily denoted by Z, defined by the equality

Z(ϕ) =
dΦMot(s, ϕ)

ds

∣∣∣∣
s=0

, ϕ ∈ Mot(XH) .

For any real t0 which belongs to the open interval on which ϕ is defined, we have

Tht0
(
Z(ϕ)

)
=

d
(
ht0
(
ΦMot(s, ϕ)

))
ds

∣∣∣∣
s=0

=
dϕ(t0 + s)

ds

∣∣∣∣
s=0

= XH

(
ϕ(t0)

)
.

This result proves that the infinitesimal generator Z of the action ΦMot is the
Hamiltonian vector field XHMot

. Being generated by the flow of a Hamiltonian
vector field, the action ϕ is therefore Hamiltonian. It admits the HamiltonianHMot

as a moment map (with the usual convention in which the Lie algebra of the ad-
ditive Lie group R is identified with R with the zero bracket and its dual is too
identified with R, the pairing by duality being the usual product of reals).

The reader will observe that while the flow of the vector field XH does not al-
ways determine a Hamiltonian action of R on the symplectic manifold (M,ω),
but only a local Hamiltonian action, except when all the motions are defined for
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all t ∈ R, the flow of XHMot
always determines a Hamiltonian action of R on

(Mot(XH), ωMot(XH)). However, the price paid for obtaining better properties
of the flow of a Hamiltonian vector field is the fact that Mot(XH) can be a non-
Hausdorff manifold. For this reason, some important results, for example the the-
orem which asserts the unicity, for a given initial condition, of a maximal solution
of a smooth differential equation, can no more be used.

In all what follows, the notation (M,ω) will be used te denote as well the phase
space as the space of motions of the dynamical system determined by a smooth
Hamiltonian which does not depend on time, according to the context in which it
is used.

3.1.2. Definitions

Let g be a real, finite-dimensional Lie algebra which acts on a connected symplec-
tic manifold (M,ω) by a Hamiltonian action ϕ : g→ A1(M)11. Let J : M → g∗

be a moment map of the action ϕ. For each β ∈ g, we consider the integral∫
M

exp
(
− 〈J(x),β〉

)
λω(dx) , (∗)

where λω is the Liouville measure on M .

1. The above integral (∗) is said to be normally convergent when there exists an
open neihbourhood U of β in g and a function f : M → R+, integrable on M
with respect to the Liouville measure λω, such that for any β′ ∈ U , the following
inequality

exp
(
−〈J(x),β′〉

)
≤ f(x)

is satisfied for all x ∈M .

2. When β ∈ g is such that the integral (∗) above is normally convergent, β is
said to be a generalized temperature. The subset of g made of generalized temper-
atures will be denoted by Ω.

3. When the set Ω of generalized temperatures is not empty, the partition func-
tion associated to the Hamiltonian action ϕ is the function P defined on Ω by the
equality

P (β) =

∫
M

exp
(
− 〈J(x),β〉

)
λω(dx) , x ∈M , β ∈ Ω ⊂ g .

11For each k ∈ N, I denote byAk(M) the space of fields of k-vectors and by Ωk(M) the space of
k-exterior differential forms on M , with the convention that A0(M) = Ω0(M) = C∞(M,R). For
k = 1, A1(M) is therefore the space of smooth vector fields on M . Endowed with the Lie bracket
as a composition law, it is an infinite-dimensional Lie algebra.
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3.1.3. Proposition

The assumptions and notations are those of Definitions 3.1.2. The set Ω of gen-
eralized temperatures does not depend on the choice of the moment map J of the
Hamiltonian action ϕ. When it is not empty, this set is an open convex subset of
the Lie algebra g, the partition function P is of class C∞ and its differentials of
all orders can be calculated by differentiation under the integration sign

∫
.

Proof: When β is a generalized temperature, Definitions 3.1.2 imply that there
exists a neighbourhood U of β whose all elements are generalized temperatures.
When it is not empty, the set Ω of generalized temperatures is therefore open.
When the moment map J is replaced by another moment map J ′, the difference
J ′ − J is a constant. The replacement of J by J ′ has no effect on the eventual
normal convergence of the above integral (∗), therefore Ω does not depend on the
choice of the moment map J .

Let β0 and β1 be two distint elements in Ω (assumed to be non-empty), U0 and U1

be neighbourhoods, respectively of β0 and β1, f0 and f1 be the positive functions,
defined onM and integrable with respect to the Liouville measure, greater or equal,
respectively, than the functions x 7→ exp

(
−〈J(x),β′0〉

)
and x 7→ exp

(
−〈J(x),β′1〉

)
for all β′0 ∈ U0 and β′1 ∈ U1. For any λ ∈ [0, 1], Uλ = {(1− λ)β′0 + λβ′1

∣∣ β′0 ∈
U0 , β

′
1 ∈ U1} is a neighbourhood of βλ = (1 − λ)β0 + λβ1. The function

fλ = (1− λ)f0 + λf1 is integrable on M . For any β′λ ∈ Uλ, it is greater or equal
to the function x 7→ exp

(
−〈J(x),β′λ〉

)
. Thereforee βλ ∈ Ω, which proves the

convexity of Ω.

For each x ∈ M fixed, the k-th differential of exp
(
−〈J(x), β〉

)
with respect to β

is
Dk
(

exp
(
−〈J, β〉

))
= (−1)kJ⊗k(x) exp

(
−〈J(x), β〉

)
,

where J⊗k(x) = J(x) ⊗ · · · ⊗ J(x) ∈ (g∗)⊗k. Let us recall that (g∗)⊗k is
canonically isomorphic with the space Lk(g,R) of k-multilinear forms on g. Let
us choose any norm on g. We take on Lk(g,R) the sup norm. For any x ∈M , we
have

‖J⊗k(x)‖ = sup
Xi∈g , ‖Xi‖≤1 , 1≤i≤k

|〈J(x), X1〉 · · · 〈J(x), Xk〉| .

Let β ∈ Ω be a generalized temperature. It follows from the definition of a gen-
eralized temperature that there exist a real ε > 0 and and a non-negative function
f defined on M , integrable with respect to the Liouville measure and greater than
the function x 7→ exp

(
−〈J(x),β′〉

)
for any β′ ∈ g satisfying ‖β′ − β‖ ≤ ε. Let

β′′ ∈ g be such that ‖β′′ − β‖ ≤ ε

2
. For all Xi ∈ g satisfying ‖Xi‖ ≤ 1, with
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1 ≤ i ≤ k, and any x ∈M , we have

J⊗k(x)(X1, . . . , Xk) = 〈J(x), X1〉 · · · 〈J(x), Xk〉 .

Taking into account the inequality, valid for all i ∈ {1, . . . k},

|〈J(x), Xi〉| ≤
2k

ε
exp

( ε
2k
|〈J(x), Xi〉|

)
,

we can write∣∣∣J⊗k(x)(X1, . . . , Xk)
∣∣∣ exp

(
−〈J(x),β′′〉

)
≤
(

2k

ε

)k
exp

(
−
〈
J(x),β′′ +

ε

2k
(η1X1 + · · ·+ ηkXk)

〉)
,

where the terms ηi, 1 ≤ i ≤ k, all equal either to 1 or to −1, are chosen in such a
way that

〈
J(x), ηiXi

〉
≤ 0. For each i ∈ {1, . . . , k}, |Xi| ≤ 1, therefore∥∥∥β − (β′′ + ε

2k
(η1X1 + · · ·+ ηkXk

)∥∥∥ ≤ ‖β − β′′‖+
εk

2k
≤ ε

2
+
ε

2
= ε .

We see that ∣∣∣J⊗k(x)(X1, . . . , Xk)
∣∣∣ exp

(
−〈J(x),β′′〉

)
≤ f(x) .

By taking the upper bound of the left hand side when theXi take all possible values
among elements in g whose norm is smaller than or equal to 1,∥∥∥J⊗k(x)

∥∥∥ exp
(
−〈J(x),β′′〉

)
≤ f(x) .

The integral ∫
M
Dk
(

exp
(
−〈J(x), β〉

))
λω(dx)

is therefore normally convergent. It follows that the partition function P is of class
C∞, and that its differentials of all orders can be calculated by differentiation under
the sign

∫
. �

3.1.4. Definition

Let β ∈ Ω be a generalized temperature. The statistical state on M whose proba-
bility density, with respect to the Liouville measure λω, is expressed as

ρβ(x) =
1

P (β)
exp
(
− 〈J(x),β〉

)
, x ∈M ,

is called the Gibbs state associated to (or indexed by) β.
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3.1.5. Proposition

For any generalized temperature β ∈ Ω, the integral below

Eρβ(J) =
1

P (β)

∫
M
J(x) exp

(
− 〈J(x),β〉

)
λω(dx)

is convergent. This integral defines the mean value Eρβ(J) of the moment map J
in the Gibbs state indexed by β. Moreover, for any other continuous statistical
state with a probability density ρ1 with respect to the Liouville measure λω, such
that Eρ1(J) exists and is equal to Eρβ(J), the entropy functional s satisfies the
inequality s(ρ1) ≤ s(ρβ), and the equality s(ρ1) = s(ρβ) occurs if and only if
ρ1 = ρβ .

Proof: The normal convergence (which implies the usual convergence) of the inte-
gral which defines Eρβ(J) follows from Proposition 3.1.3. Let ρ1 be the probability
density, with respect to λω, of another continuous statistical state such that Eρ1(J)
exists and is equal to Eρβ(J). The function, defined on R+,

z 7→ h(z) =

z log

(
1

z

)
if z > 0

0 if z = 0

being convex, the straight line tangent to its graph at one of its point
(
z0, h(z0)

)
is always above this graph. Therefore, for all z > 0 and z0 > 0, the following
inequality holds:

h(z) ≤ h(z0)− (1 + log z0)(z − z0) = z0 − z(1 + log z0) .

With z = ρ1(x) and z0 = ρβ(x), for any x ∈M , this inequality becomes

h
(
ρ1(x)

)
= ρ1(x) log

(
1

ρ1(x)

)
≤ ρβ(x)−

(
1 + log ρβ(x)

)
ρ1(x) .

By integrating on M both sides of the above inequality, we get, since ρβ is the
probability density of the Gibbs state indexed by β,

s(ρ1) ≤ 1− 1−
∫
M
ρ1(x) log ρβ(x)λω(dx) = s(ρβ) .

We have proven the inequality s(ρ1) ≤ s(ρβ). If ρ1 = ρβ , of course s(ρ1) =
s(ρβ). Conversely, let us now assume that s(ρ1) = s(ρβ). The functions ϕ1 and
ϕ, defined on M , whose expressions are

ϕ1(x) = ρ1(x) log

(
1

ρ1(x)

)
, ϕ(x) = ρβ(x)−

(
1 + log ρβ(x)

)
ρ1(x) , x ∈M ,
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are continuous, except, maybe, the function ϕ at points x where ρβ(x) = 0 and
ρ1(x) 6= 0. For the Liouville measure λω, the subset of M made of these points is
of measure 0, since ϕ is integrable. The functions ϕ and ϕ1 satisfy the inequality
ϕ1 ≤ ϕ, are integrable onM and their integrals are equal. Their difference ϕ−ϕ1,
everywhere ≥ 0 on M and with an integral equal to 0, is therefore everywhere
equal to 0. Therefore, for any x ∈M ,

ρ1(x) log

(
1

ρ1(x)

)
= ρβ(x)−

(
1 + log ρβ(x)

)
ρ1(x) . (∗)

For any x ∈M such that ρ1(x) 6= 0, we can divide both sides of the above equality
by ρ1(x). We get

ρβ(x)

ρ1(x)
− log

(
ρβ(x)

ρ1(x)

)
= 1 .

The function z 7→ z − log z reaches its minimum at only one point z > 0, the
point z = 1, and its minimum is equal to 1. So for all x ∈M such that ρ1(x) > 0,
ρ1(x) = ρβ(x). At points x ∈ M such that ρ1(x) = 0, equality (∗) proves that
ρβ(x) = 0. Therefore ρ1 = ρβ everywhere on M . �

3.1.6. Proposition

We now assume that g is the Lie algebra of a Lie group G which acts on the sym-
plectic manifold (M,ω) by a Hamiltonian action Φ, and that ϕ is the Lie algebra
action associated to Φ. The Gibbs state indexed by any generalized temperature
β ∈ Ω is invariant by the restriction of the action Φ to the one-parameter subgroup{

exp(τβ)
∣∣ τ ∈ R

}
of G.

Proof: The orbits of the action of this subgroup on M are the integral curves of
the Hamiltonian vector field which admits the function x 7→

〈
J(x),β

〉
as Hamil-

tonian. This function is therefore constant on each orbit of this one-parameter
subgroup. The expression of the probability density ρβ of the Gibbs state indexed
by β proves that this probability density too is constant on each orbit of the action
of
{

exp(τβ)
∣∣ τ ∈ R

}
. �

3.2. Thermodynamic functions

In this section, the map Φ : G×M →M is a Hamiltonian action of a Lie groupG
on a connected symplectic manifold (M,ω) and J : M → g∗ is a moment map of
this action. It is assumed that the open subset Ω ⊂ g of generalized temperatures
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is not empty. In Definitions 3.1.2, we have defined the partition function P , whose
expression is

P (β) =

∫
M

exp
(
− 〈J(x), β〉

)
λω(dx) , β ∈ Ω .

On the set Ω of generalized temperatures, we define below other thermodynamic
functions whose expressions can be derived from that of P .

3.2.1. Definitions

Assumptions and notations here are those of Subsection 3.2.

1. The mean value of the moment map J is the function, denoted by EJ , defined
on Ω and taking its values in the dual vector space g∗ of the Lie algebra g, whose
expression is

EJ(β) = Eρβ(J) =
1

P (β)

∫
M
J(x) exp

(
− 〈J(x),β〉

)
λω(dx) , β ∈ Ω .

2. The entropy function is the function, denoted by S, defined on Ω and taking
its values in R∪{−∞}, which associates, to each generalized temperature β ∈ Ω,
the entropy of the Gibbs state indexed by β:

S(β) = s(ρβ) =

∫
M
ρβ(x) log

(
1

ρβ(x)

)
λω(dx) , β ∈ Ω .

3.2.2. Proposition

For each generalized temperature β ∈ Ω, the values at β of the thermodynamic
functions mean value of J and entropy (Definitions 3.2.2) are given by the formulae

EJ(β) = − 1

P (β)
DP (β) = −D(logP )(β) ,

S(β) = logP (β) +
〈
EJ(β),β

〉
= logP (β)−

〈
D(logP )(β),β

〉
.

Proof: Proposition 3.1.3 states that the partition function P is of class C∞ and
that its differentials of all orders can be obtained by differentiation under the sign∫

. Therefore

DP (β) = −
∫
M
J exp

(
−〈J(x),β〉

)
λω(dx) = −P (β)EJ(β) ,
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which proves the indicated expresions of EJ(β). Since for each x ∈ M , we have

ρβ(x) =
exp
(
−〈J(x),β〉

)
P (β)

,

ρβ(x) log
1

ρβ(x)
=

1

P (β)
exp
(
−〈J(x),β〉

)(
〈J(x),β〉+ logP (β)

)
.

By integration over M of both members of this equality with respect to λω, we
obtain the indicated expression of S(β). �

3.2.3. Proposition

The thermodynamic functions EJ (mean value of J) and S (entropy) are of class
C∞ on Ω. The first differential of EJ is the function, defined on Ω and taking its
values in the space of linear applications of g in its dual vector space g∗, whose
expression is 〈

DEJ(β)(X), Y
〉

= −D2(logP )(β)(X,Y )

= − 1

P (β)

∫
M

〈
J(x)− EJ(β), X

〉〈
J(x)− EJ(β), Y

〉
exp
(
−〈J(x),β〉

)
λω(dx) ,

with X and Y ∈ g. For each β ∈ Ω, DEJ(β) can be considered as a bilinear,
symmetric form on g.

The differential of the entropy function S at each β ∈ Ω is an element of g∗ whose
expression is 〈

DS(β), X
〉

=
〈
DEJ(β)(X),β

〉
, X ∈ g .

Proof: According to Proposition 3.2.2, for each β ∈ Ω, EJ(β) = −D(logP )(β).
Therefore, for all X and Y ∈ g,〈

DEJ(β)(X), Y
〉

= −D2(logP )(β)(X,Y ) ,

which shows that DEJ(β) can be considered as a bilinear, symmetric form on g.
Since DP (β) can be obtained by differentiation under the sign

∫
,

D(logP )(β) =
1

P (β)
DP (β) = − 1

P (β)

∫
M
J(x) exp

(
−〈J(x),β〉

)
λω(dx) .

By a second differentiation under the sign
∫

, we therefore obtain, for all X and
Y ∈ g,

D2(logP )(β)(X,Y ) =
1

P (β)

∫
M
〈J(x), X〉〈J(x), Y 〉 exp

(
−〈J(x),β〉

)
λω(dx)

+
1(

P (β)
)2DP (β)(Y )

∫
M
〈J(x), X〉 exp

(
−〈J(x),β〉

)
λω(dx) .
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Let us replaceDP (β)(Y ) and
∫
M 〈J(x), X〉 exp

(
−〈J(x),β〉

)
λω(dx), in the right

hand side of this equality, by their expressions

DP (β)(Y ) = −P (β)
〈
EJ(β), Y

〉
,∫

M
〈J(x), X〉 exp

(
−〈J(x),β〉

)
λω(dx) = P (β)

〈
EJ(β, X

〉
.

We obtain

D2(logP )(β)(X,Y ) =
1

P (β)

∫
M
〈J(x), X〉〈J(x), Y 〉 exp

(
−〈J(x),β〉

)
λω(dx)

−
〈
EJ(β), Y

〉〈
EJ(β, X

〉
=

1

P (β)

∫
M

〈
J(x)− EJ(β), X

〉〈
J(x)− EJ(β), Y

〉
exp
(
−〈J(x),β〉

)
λω(dx) ,

The expression of
〈
DEJ(β)(X), Y

〉
given in the statement follows.

By differentiation of the expression of S(β) given in Proposition 3.2.2, and by
using the equality DP (β) = −P (β)EJ(β), we obtain, for any X ∈ g,〈

DS(β), X
〉

=
1

P (β)
DP (β)(X) +

〈
EJ(β), X

〉
+
〈
DEJ(β)(X),β

〉
=
〈
DEJ(β)(X),β

〉
.

�

3.2.4. Theorem

For all β ∈ Ω, X and Y ∈ g, let

Γ(β)(X,Y ) = −
〈
DEJ(β)(X), Y

〉
= D2(logP )(β)(X,Y ) .

The map Γ so defined is a C∞ bilinear, symmetric differential form defined on Ω
such that, for each β ∈ Ω and X ∈ g,

Γ(β)(X,X) ≥ 0 .

Moreover, if X ∈ g is such that x 7→
〈
J(x), X

〉
is not a constant function,

Γ(β)(X,X) > 0 .

When, in addition, the Hamiltonian action Φ : G×M →M is effective (it means
that for any X ∈ g, X 6= 0, the function x 7→

〈
J(x), X

〉
is not a constant on
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M ), Γ is a Riemannian metric on Ω. Moreover, the map EJ : Ω→ g∗ is injective,
its image is an open subset Ω∗ of g∗, and considered as valued in Ω∗, EJ is a
diffeomorphism of the set Ω of generalized temperatures onto the open subset Ω∗

of g∗.

Proof: The firt assertions follow from the the expression of
〈
DEJ(β)(X), Y

〉
given in Proposition 3.2.3. When X ∈ g is such that the function x 7→

〈
J(x), X

〉
is not a constant on M , the function

x 7→
〈
J(x)− EJ(β), X

〉2
exp
(
−〈J,β〉

)
is continuous, with values ≥ 0 and not everywhere equal to 0 on M . Its integral
with respect to the Liouville measure is therefore strictly positive, which proves
that Γ(β)(X,X) > 0.

When, in addition, the action Φ effective, for any β ∈ Ω and any non-zero X ∈ g,
Γ(β)(X,X) > 0. The map Γ is therefore an Riemannian metric on Ω. For all
β ∈ Ω and Y ∈ g\{0}, we have

〈
DEJ(β)(Y ), Y

〉
< 0, which implies that

DEJ(β) is invertible. The map EJ : Ω → g∗ is therefore open. This map cannot
take the same value at two distinct points β1 an β2 ∈ Ω, since this would imply〈

EJ(β1),β2 − β1

〉
=
〈
EJ(β2),β2 − β1

〉
.

The real-valued function

λ 7→
〈
EJ
(
(1− λ)β1 + λβ2

)
,β2 − β1

〉
, λ ∈ [0, 1] ,

would be well defined on [0, 1] since Ω is convex, smooth in ]0, 1[, and would take
the same value for λ = 0 and λ = 1. Its derivative with respect to λ, whose value is〈
DEJ

(
λβ1+(1−λ)β2

)
(β2−β1), (β2−β1)

〉
would vanish fore some λ ∈]0, 1[,

which would contradict the effectiveness of Φ. Being open and injective, the map
EJ : Ω→ g∗ is a diffeomorphism of Ω onto its image Ω∗, which is an open subset
of g∗. �

3.2.5. Remarks

Theorem 3.2.4 leads to the following observations.

1. In the language of Probability theory, −
〈
DEJ(β)(X), X

〉
is the variance, in

other words the square of the standard deviation of the random variable 〈J,X〉, for
the probability law ρβλω on M .
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2. For each generalized temperature β ∈ Ω, the Gibbs state indexed by β is the
probability law on M , absolutely continuous with respect to the Liouville measure
λω, of probability density

ρβ =
1

P (β)
exp
(
−〈J,β〉

)
.

The open subset Ω of g, in which live the generalized temperatures β which index
a familly of probability laws defined on M , is called by statisticians a statistical
manifold. The Fisher-Rao metric, so named in honour of the British statistician and
genetician Ronald Aylmer Fisher (1890–1962) and the Indian statistician Calyam-
pudi Radhakrishna Rao (born in 1920, emeritus Professor at the Indian Statistics
Institute and at the Pennsylvania State University) is a Riemannian metric, de-
fined on some statistical manifolds, which is used to evaluate the distance between
probability laws. Frédéric Barbaresco [5] observed that the Riemannian metric Γ
defined by Jean-Marie Souriau on Ω is nothing else than the Fisher-Rao metric
when, as indicated above, Ω is considered as a statistical manifold. He observed
too that this metric already appeared in the works of the French mathematician
René Maurice Fréchet (1878–1973) [11], two years before it was rediscovered by
Fisher and Rao.

3. Under the assumptions of Theorem 3.2.4, the equality

S(β) =
〈
D(− logP )(β),β

〉
− (− logP )(β)

proves that each of the two functions − logP : Ω → R and S ◦ E−1J : Ω∗ → R
is the Legendre transform of the other, just as a hyper-regular Lagrangian L :
TM → R and the associated Hamiltonian H : T ∗M → R, defined, respectively,
on the tangent bundle TM and on the cotangent bundle T ∗M to some smooth
manifold M . Here the Legendre map is EJ : Ω → Ω∗. This map and its inverse
(EJ)−1 : Ω∗ → Ω are expressed by formulae similar to those which express
the Legendre map TM → T ∗M and its inverse T ∗M → TM in calculus of
variations,

EJ = D(− logP ) , (EJ)−1 = D(S ◦ EJ−1) .

The moment map J of the Hamiltonian action Φ is not unique: it is well known
that for any constant µ ∈ g, J + µ is too a moment map of Φ. Proposition 3.2.6
below indicates the effet of such a change on the thermodynamic functions P , EJ
and S.
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3.2.6. Proposition

Let µ ∈ g∗ be a constant. When the moment map J of the Hamiltonian action Φ is
replaced by J1 = J + µ, the set Ω of generalized temperatures does not change.
The thermodynamic functions P , EJ and S are replaced, respectively, by P1, EJ1
and S1, whose expressions are

P1(β) = exp
(
−〈µ,β〉

)
P (β) , EJ1(β) = EJ(β) + µ , S1(β) = S(β) .

For each β ∈ Ω, the associated Gibbs state, its probability density ρβ with respect
to the Liouville measure λω and the bilinear, symmetric form Γ (Theorem 3.2.4)
are not changed.

Proof: The stated results follow from the equality

exp
(
−〈J + µ,β〉

)
= exp

(
−〈µ,β〉

)
exp
(
−〈J,β〉

)
.

�

3.3. Generalized temperatures and adjoint action

As in the previous section, Φ : G×M →M is a Hamiltonian action of a connected
Lie group G on a connected symplectic manifold (M,ω) and J : M → g∗ is a
moment map of this action. The set of generalized temperatures is assumed to be
a non-empty subset Ω of the Lie algebra g. As seen in Proposition 3.2.6, Ω does
not depend on the choice of the moment map J . We moreover assume that Φ is
effective, which implies (Theorem 3.2.4) that EJ is a diffeomorphism of Ω onto
an open subset Ω∗ of g∗, and that the bilinear, symmetric form Γ is a Riemannian
metric on Ω. By considering the adjoint action of G on Ω, we prove below that
Ω is a union of adjoint orbits (Proposition 3.3.1) and that the Riemannian metric
induced by Γ on each of these orbits can be expressed in terms of a symplectic
cocycle of the Lie algebra g (Theorem 3.3.4).

The next proposition proves that Ω is a union of adjoint orbits and indicates the
variations of the thermodynamic functions P , EJ and S on each adjoint orbit con-
tained in Ω.

3.3.1. Proposition

The set Ω of generalized temperatures is a union of orbits of the adjoint action of
the Lie group G on its Lie algebra g. Let θ : G→ g∗ be the symplectic cocycle of
G (see, for example, [18]) such that, for each g ∈ G

J ◦ Φg = Ad∗g−1 ◦ J + θ(g) .
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For any β ∈ Ω and any g ∈ G, we have

P (Adgβ) = exp
(〈
θ(g−1),β

〉)
P (β) = exp

(
−
〈
Ad∗gθ(g),β

〉)
P (β) ,

EJ(Adgβ) = Ad∗g−1EJ(β) + θ(g) ,

S(Adgβ) = S(β) .

Proof: Let us assume that the integral which defines P (Adgβ) is convergent. We
can write

P (Adgβ) =

∫
M

exp
(
−〈J(x),Adgβ〉

)
λω(dx)

=

∫
M

exp
(
−〈Ad∗gJ(x),β〉

)
λω(dx)

=

∫
M

exp
(
−
〈
J ◦ Φg−1(x)− θ(g−1),β

〉)
λω(dx)

= exp
(〈
θ(g−1),β

〉) ∫
M

exp
(
−
〈
J ◦ Φg−1(x),β

〉)
λω(dx) .

The change of integration variable y = Φg−1(x) in the last integral leads to∫
M

exp
(
−
〈
J◦Φg−1(x),β

〉)
λω(dx) =

∫
M

exp
(
−
〈
J(y),β

〉)
Φ∗gλω(dy) = P (β) ,

since Φ∗gλω = λω, the Liouville measure being invariant by symplectomophisms.
Moreover, θ(g−1) = −Ad∗gθ(g) (see for example [18]), so we can write

P (Adgβ) = exp
(
−
〈
Ad∗gθ(g),β

〉)
P (β) .

By reversing the above calculation step by step, we prove that the normal conver-
gence of the integral which defines P (β) implies the normal convergence of the
integral which defines P (Adgβ). We therefore have proven that Ω is a union of
adjoint orbits of G, as well as the expression of P (Adgβ) in terms of P (β) and θ
given in the statement.

Since EJ(β) = −D(logP )(β), EJ(Adgβ) = −D(logP )(Adgβ). To calculate
the right hand side of this equality, we observe that for each δ ∈ g and each real s,

D(logP )(Adgβ)(δ) =
d

ds

(
logP (Adgβ + sδ)

) ∣∣
s=0

=
d

ds

(
logP

(
Adg(β + sAdg−1δ

)) ∣∣
s=0
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Using the expression of P (Adgβ) obtained above, we have

logP
(
Adg(β+sAdg−1δ)

)
= −〈Ad∗gθ(g),β+sAdg−1δ〉+logP (β+sAdg−1δ) .

Taking the derivative with respect to s, then setting s = 0, we get

D logP (Adgβ)(δ) = −
〈
Ad∗gθ(g),Adg−1δ

〉
+D logP (β)(Adg−1δ)

= −
〈
θ(g), δ

〉
+D log(P )(β)(Adg−1δ)

= −
〈
θ(g) + Ad∗g−1EJ(β), δ

〉
,

where we have used the already obtained equality D logP (β) = −EJ(β). There-
fore,

EJ(Adgβ) = Ad∗g−1EJ(β) + θ(g) .

Finally,

S(Adgβ) = logP (Adgβ)−
〈
D logP (Adgβ),Adgβ

〉
= −

〈
Ad∗gθ(g),β

〉
+ logP (β) +

〈
Ad∗g−1EJ(β) + θ(g),Adgβ

〉
= logP (β) +

〈
EJ(β),β

〉
= S(β) .

�

3.3.2. Remark

The equality

EJ(Adgβ) = Ad∗g−1EJ(β) + θ(g)

states that the map EJ : Ω → Ω∗ is equivariant with respect to the adjoint action
Φ of G on g, restricted to the open subset Ω of g, and its affine action aθ on g∗:

aθ(g, ξ) = Ad∗g−1ξ + θ(g) , g ∈ G , ξ ∈ g∗ ,

restricted to the open subset Ω∗ of g∗. This result is not surprising, since it is well
known (see, for example, [18]) that the moment map J itself is equivariant with
respect to the action Φ of G on M and its affine action aθ on g∗: it states that the
equivariance of J implies the equivariance of its mean value.
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3.3.3. Proposition

Let Θ = Teθ : g → g∗ be the 1-cocycle of the Lie algebra g associed to the
symplectic 1-cocycle θ of the Lie group G (see, for example, [18]). For any β ∈ Ω
and any X ∈ g, 〈

EJ(β), [X,β]
〉

=
〈
Θ(X),β

〉
,

DEJ(β)
(
[X,β]

)
= −ad∗XEJ(β) + Θ(X) .

Proof: Let us set g = exp(τX) in the expression of P (Adgβ) given in Proposition
3.3.1, then take the derivative with respect to τ and set τ = 0. Using the well
known equalities θ(e) = 0 and Teθ = Θ, we obtain

DP (β)
(
[X, b]

)
=

d

dτ

(
exp
(
−
〈
Ad∗exp(τX)θ

(
exp(τX)

)
,β
〉)
P (β)

) ∣∣∣
τ=0

= −
〈
Θ(X),β

〉
P (β) ,

which proves the first assertion, since DP (β) = −P (β)EJ(β).

Similarly, let us set g = exp(τX) in the expression of EJ(Adgβ) given in Propo-
sition 3.3.1, then take the derivative with respect to τ and set τ = 0. We obtain

DEJ(β)
(
[X,β]

)
=

d

dτ

(
Ad∗exp(−τX)EJ(β) + θ

(
exp(τX)

)) ∣∣∣
τ=0

= −ad∗XEJ(β) + Θ(X) .

�

3.3.4. Theorem

Let us set, for each generalized temperature β ∈ Ω,

Jβ = J − EJ(β) ,

and, for each g ∈ G,

θβ(g) = θ(g)− EJ(β) + Ad∗g−1EJ(β) .

The map Jβ is the unique moment map of the Hamiltonian action Φ whose mean
value, for the generalized temperature β, is equal to 0. The map θβ is the symplec-
tic cocycle of the Lie group G, cohomologous to θ, associated to the moment map
Jβ. It depends on β but not on the choice of J .



Gibbs states of mechanical systems with symmetries 37

Let Θβ : g → g∗ be the symplectic cocycle of the Lie algebra g associated to the
symplectic 1-cocycle θβ of the Lie group G (see, for example, [18]). Its expression
is

Θβ(X) = Teθβ(X) = Θ(X)− ad∗XEJ(β) .

The map Θβ is the unique symplectic 1-cocycle of the Lie algebra g which is co-
homologous to Θ and satisfies the equality

Θβ(β) = 0 .

Let X and Y be two elements in g, considered as two elements of TβΩ, in other
words as two vectors tangent to Ω at its point β. Let us moreover assume that
X is tangent to the adjoint orbit of β at its point β. There exists X1 ∈ g such
that X = [β, X1]. When evaluated on the pair of tangent vectors (X,Y ), the
Riemannian metric Γ can be expressed as

Γ(β)(X,Y ) =
〈
Θβ(X1), Y

〉
.

If Y too is tangent to the adjoint orbit of β at its point β, there exists Y1 ∈ g such
that Y = [β, Y1], and we have the two equalities, which express the Riemannian
metric induced by Γ on the adjoint orbit of β,

Γ(β)(X,Y ) =
〈
Θβ(X1), Y

〉
=
〈
Θβ(Y1), X

〉
.

Proof: Since Θ, being a symplectic cocycle, is skew-symmetric, we have, for each
X ∈ g,

〈
Θ(β), X

〉
= −

〈
Θ(X),β

〉
. Using the equalities proven in Proposi-

tion3.3.3, we obtain〈
Θβ(β), X

〉
=
〈
Θ(β), X

〉
−
〈
ad∗βEJ(β), X

〉
= −

〈
Θ(X),β

〉
−
〈
EJ(β), [β, X]

〉
= −

〈
EJ(β), [X,β]

〉
−
〈
EJ(β), [β, X]

〉
= 0 .

Other statements about Jβ, θβ and Θβ easily follow from well known properties
of moment maps of Hamiltonian actions (see for example [18]).

Using Theorem 3.2.4 and Proposition 3.3.3, we obtain, for all β ∈ Ω, X1 and
Y ∈ g, with X = [X1,β],

Γ(β)
(
[X1,β], Y

)
= −

〈
DEJ(β)

(
[X1,β]

)
, Y
〉

=
〈
ad∗[X1,β]

EJ(β) + Θ(X1), Y
〉
.

According to Proposition 3.2.6, the bilinear form Γ does not depend on the choice
of the moment map J , so we can replace J by Jβ in the right hand side of the
above equality. Of course we have to replace too EJ by EJβ and Θ by Θβ. The
map Jβ was chosen so thatEJβ(β) = 0, so we obtain

Γ(β)
(
[X1,β], Y

)
=
〈
Θβ(X1), Y

〉
.
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When we both have X = [X1,β] and Y = [Y1,β], with X1 and Y1 ∈ g, we can
exchange the parts played by X and Y and write

Γ(β)(X,Y ) = Γ(β)
(
[X1,β], [Y1,β]

)
= Γ(β)

(
[Y1,β], [X1,β]

)
= Γ(β)

(
[Y1,β], X

)
=
〈
Θβ(Y1), X

〉
.

�

4. Final comments

Gibbs states built with a Hamiltonian which does not depend on time appear as
good models of physicists’ states of thermodynamic equilibrium : they are invari-
ant by the flow of the associated Hamiltonian vector field (proposition 2.3.3), and
the properties of the real parameter β which indexes the set of Gibbs states are in
good agreement with those of the inverse of an absolute temperature (subsection
2.3.5). However, the flow of a Hamiltonian vector field whose Hamiltonian does
not depend on time cannot describe the evolution with time of a statistical state
towards the corresponding state of thermodynamic equilibrium, since the state’s
entropy is invariant by this flow (proposition 2.2.10).

Properties of Gibbs states built with the moment map of the Hamiltonian action
of a Lie group are very similar to those of Gibbs states built with a Hamiltonian
which does not depend on time as the only conserved quantity : the set of gen-
eralized temperatures is an open convex subset of the Lie algebra, the partition
function, the mean value of the moment map and the entopy are smooth functions
of the generalized temperature. When the considered Lie group is not commuta-
tive, remarkable new equivariance properties with respect to the adjoint action of
this Lie group appear, which did not exist for Gibb states built with the Hamil-
tonian as the only conserved quantity (subsection 3.3). Generalized temperatures
only exist when there exist a non-empty subset Ω of elements β in the Lie algebra
of the considered Lie group for which the integral which defines the partition func-
tion is normally convergent (definition 3.1.2). When the considered symplectic
manifold is not compact, one may think that the restrictions imposed by this con-
dition increase with the dimension of the considered Lie group. Our next paper will
present examples of Gibbs states for the Hamiltonian action of a non-commutative
Lie group on a symplectic manifold, even when the considered symplectic man-
ifold is not compact, and examples in which no Gibbs state can exist, the set of
generalized temperatures being empty.
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