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Abstract

The author thinks that the main ideas or Relativity Theory can be explained to

children (around the age of 15 or 16) without complicated calculations, by using

very simple arguments of affine geometry. The proposed approach is presented as a

conversation between the author and one of his grand-children. Limited here to the

Special Theory, it will be extended to the General Theory elsewhere, as sketched in

conclusion.

For Agathe, Florent, Basile, Mathis, Gabrielle,

Morgane, Quitterie, Marilou

and my future other grand- and grand-grand-children

1 Prologue

Maybe one day, one of my grand-children, at the age of 15 or 16, will ask me:

— Grand-father, could you explain what is Relativity Theory? My Physics teacher

lectured about it, talking of rolling trains and of lightnings hitting the railroad, and I

understood almost nothing!

This is the discussion I would like to have with her (or him).

— Do you know the theorem: the diagonals of a parallelogram meet at their middle

point?

— Yes, I do! I even know that the converse is true: if the diagonals of a plane quadri-

lateral meet at their middle point, that quadrilateral is a parallelogram. And I believe that

I know a proof!

— Good! You know all the stuff needed to understand the basic idea of Relativity

theory! However, we must first think about Time and Space.

— Time and space seem to me very intuitive, and yet difficult to understand in deep!

— Many people feel the same. The true nature of Time and Space is mysterious. Let

us say that together, Time and Space make the frame in which all physical phenomena

take place, in which all material objects evolve, including our bodies. We should keep a

modest mind profile on such a subject. We cannot hope to understand all the mysteries
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of Time and Space. We should only try to understand some of their properties and to use

them to describe physical phenomena. We should be ready to change the way we think

about Time and Space, if some experimental evidence shows that we were wrong.

— But if we do not know what are Time and Space, how can we hope to understand

some of their properties, and to be able to use them?

— By building mental pictures of Time and Space. Unfortunately we, poor limited

human beings, cannot do better: we know the surrounding world only through our senses

(enhanced by the measurement and observation instruments we have built) and our ability

of reasoning. Our reasoning always apply to the mental pictures we have built of reality,

not to reality itself.

Let me now indicate how the mental pictures of Time and Space used by scientists have

evolved, mainly from Newton to Einstein.

2 The views of Newton and Leibniz about Time and Space

2.1 Newtonian Time

The great scientist Isaac Newton [2] (1642–1727) used, as mental picture of Time, a

straight line T, going to infinity on both sides, hence with no beginning nor end and no

privileged origin. Each particular time, for example “now”, or ”three days ago at the

sunset at Paris”, corresponds to a particular element of that straight line.

Observe that Newton considered, without any discussion, that for each event happening

in the universe, there was a corresponding well defined time (element of the straight line

T), the time at which that event happens.

— Where is that straight line T? Is it drawn in some plane or in space?

— Nowhere! You should not think about the straight line of Time T as drawn in

something of larger dimension. Newton considered Time as an abstract straight line,

because successive events are linearly ordered, like points on a straight line. Don’t forget

that T is a mental picture of Time, not Time itself! However, that mental picture is much

more than a confuse idea: it has very well defined mathematical properties. In modern

language, we say that T is endowed with an affine structure and with an orientation.

— What is an affine structure? and what is its use?

— An affine structure on a line allows us to compare two time intervals and to take

their ratio, for example to say that one of these intervals is two times the other one. New-

ton considered the comparison of two time intervals as possible, even when they were

many centuries or millenaries apart, and to take their ratio. In modern mathematical lan-

guage, that property determines on a line an affine structure.

For the mathematician, that property means that we can apply transforms to T by sliding

it along itself, without contraction nor dilation, and that these transforms (called transla-

tions) do not change its properties.

For the physicist, it means that the physical laws which govern the evolution with time

of any system remain the same at all times.

Another important property of Time: it always flows from past to future. To take it into

account, we endow T with an orientation; it means that we consider the two directions

(from past to future and from future to past) as different, not equivalent, for example by

choosing the direction from past to future as preferred. We then say that T is oriented.
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Figure 1: World lines in Newton Space-Time.

2.2 Newton’s absolute space

— OK, I roughly agree with that mental picture, although it does not account for the

main property of Time: it flows continuously and we cannot stop it! And what about

Space?

— Newton identified Space with the three dimensional space of geometers, denoted

by E : the space in which there are various figures made of planes, straight lines, spheres,

polyhedra, which obey the theorems developed in Euclidean geometry: Thales and Py-

thagoras theorems, the theorem which says that the diagonals of a parallelogram meet at

their middle point, . . .

2.3 The concept of Space-Time

Newton used Time and Space to describe the motion of every object A of the physical

world as follows. That object occupies, at each time t (element of T) for which it exists,

a position At in Space E. The motion of of A is described by its successive positions At

when t varies in T.

Let me introduce now a new concept, that of Space-Time [1], due to the German math-

ematician Hermann Minkowski (1864–1909). That concept was not used in Mechanics

before the discovery of Special Relativity. That is very unfortunate, since its use makes

much easier the understanding of the foundations of Classical Mechanics, as well as those

of Relativistic Mechanics. Therefore I use it now, with the absolute Time and Space of

Newton, although Newton himself did not use that concept.

Newton Space-Time is simply the product set E×T, whose elements are pairs (called

events) (x, t), made by a point x of E and a time t of T.

— What is the use of that Space-Time?

— It is very convenient to describe motions. For example, the motion of a material

particle a (a very small object whose position, at each time t ∈ T, is considered as a point

at ∈ E), is described by a line in E×T, made by the events (at, t), for all t in the interval

of time during which a exists. That line is called the world line of a.

You will see on Figure 1 (where, for simplicity, Space is represented as a straight line,

as if it were one-dimensional) the world lines of three particles, a, b and c.

• The world line of b est parallel to the Time axis T: that particle is at rest, il occupies

a fixed position in the absolute Space E.

• The world line of c is a slanting straight line. The trajectory of that particle in

absolute Space E is a straight line and its velocity is constant.

3



• The world line of a is a curve, not a straight line. It means that the velocity of a

changes with time.

2.4 Absolute rest and motion

For Newton, rest and motion were absolute concepts: a physical object is at rest if its

position in Space does not change with time; otherwise, it is in motion.

— It seems very natural. Why should we change this view?

— Because nothing is at rest in the Universe! The Earth rotates around its axis and

around the Sun, which rotates around the center of our Galaxy. And there are billions

of galaxies in the Universe, each of them moving with respect to the others! For these

reasons, Newton’s concept of an absolute Space was criticized very early, notably by

his contemporary, the great mathematician and philosopher Gottfried Wilhelm Leibniz

(1647–1716).

2.5 Reference frames

— But without knowing what is at rest in the Universe, how Newton managed to study

the motions of the planets?

— To study the motion of a body A, Newton, and after him almost all scientists up

to now, used a reference frame. It means that he used another body R which remained

approximately rigid during the motion he wanted to study, and he made as if that body

was at rest. Then he could study the relative motion of A with respect to R.

Assuming that Newton’s absolute Space E exists, we recover the description of absolute

motion of A by choosing, for R, a body at rest in E. The corresponding reference frame is

called the absolute fixed frame.

The body R used to determine a reference frame can be, for example,

• the Earth (if we want to study the motion of a falling apple),

• the trihedron made by the straight lines which join the center of the Sun to three

distant stars (if we want to study the motions of the planets in the solar system).

2.6 Galilean frames and Leibniz Space-Time

All reference frames are not equivalent. A Galilean frame 1, also called an inertial frame,

is a reference frame in which the principe of inertia holds true. That principle, first formu-

lated for absolute motions in Newton’s absolute space E, says that the (absolute) motion

of a free particle takes place on a straight line, at a constant speed. But, as shown by

Newton himself, that principe remains true for the relative motion of a free particle with

respect to some particular reference frames, the Galilean frames.

More exactly, let us assume that the principle of inertia holds true for the relative motion

of free particles with respect to the reference frame defined by the rigid body R1. What

happens for the relative motion of these free particles with respect to another reference

frame, defined by another rigid body R2? It is easy to see that the principle of inertia

still holds true if and only if the relative motion of R2 with respect to R1 is a motion by

translation at a constant speed.

1 In memory of Galileo Galilei, (1564–1642), the founder of modern Physics.
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Figure 2: Newton and Leibniz Space-Time.

The absolute frame, if it exists, therefore appears as a Galilean frame among an infinite

number of other Gallilean frames, that no measurement founded on mechanical properties

can distinguish from the others. For this reason, several scientists, following Leibniz,

doubted about its existence.

Leibniz accepted Newton’s concept of an absolute Time, but not that of an absolute

Space. His views were not successful during his life, probably because at that time nobody

saw how to cast them in a mathematically rigorous setting. Now we can do that; let me

explain how.

We will consider that at each time t ∈ T, there exists a Space at time t, denoted by Et ,

whose properties are those of the three-dimensional Euclidean space of geometers. We

must consider that the Spaces Et1 and Et2 , at two different times t1 and t2, t1 6= t2, have no

common element. Leibniz Space-Time, which will be denoted by U (for Universe), is the

disjoint union of all the Spaces Et for all times t ∈ T. So, according to Leibniz views, we

still have a Space-Time, but no more an absolute space ! The next picture shows,

• on the left side, Newton Space-Time E×T, with the two projections p1 : E×T→ E

and p2 : E×T → T;

• on the right side, Leibniz Space-Time U, endowed with only one natural projection

onto absolute Time T, still denoted by p2 : U→ T; the horizontal lines represent the

Spaces Et = p−1
2 (t), for various values of t ∈ T.

— But how do you put together the Spaces at various times Et to make Leibniz Space-

Time U? Are they stacked in an arbitrary way?

— Of course no! Leibniz Space-Time U is a 4-dimensional affine space, fibered (via

an affine map) over Time T, which is itself a 1-dimensional affine space. Its fibres, the

Spaces Et at various times t ∈ T, are 3-dimensional Euclidean spaces. The affine structure

of U is determined by the principle of inertia of which we have already spoken. That

principle can be formulated in a way which does not use reference frames, by saying:

The world line of any free particle is a straight line.

So formulated, the principle of inertia can be applied to Newton Space-Time E×T and

to Leibniz Space-Time U as well. More, it determines the affine structure of U, since

one can easily show that the affine structure for which it holds true, if any, is unique. A

physical law, the principle of inertia, is so embedded in the geometry of Leibniz Space-

Time U.
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By using a reference frame R, one can split Leibniz Space-Time into a product of two

factors: a space ER, fixed with respect to that frame, and the absolute Time T. But of

course, the space ER depends on the choice of the reference frame R. For that reason,

it seems that before 1905, not many scientists were aware of the fact that by dropping

Newton’s absolute Space E, they already had completely changed the conceptual setting

in which motions are described:

• according to Newton, absolute Space E and absolute Time T were directly related

to reality, while Space-Time E× T was no more than a mathematical object, not

very interesting (he did not use it) and not directly related to reality;

• but according to Leibniz’s views, when expressed as done above, it is Space-Time

U which is directly related to reality, as well as absolute Time T; absolute Space E

no more exists.

3 Relativity

Einstein [1] was led to drop Leibniz Space-Time when trying to reconcile the theories

used in two different parts of Physics: Mechanics on one hand, Electromagnetism and

Optics on the other hand.

According to the theory built by the great Scotch physicist James Clerk Maxwell (1831–

1879), electromagnetic phenomena propagate in vacuum as waves, with the same velocity

in all directions, independently of the motion of the source of these phenomena. Maxwell

soon understood that light was an elecromagnetic wave, and lots of experimental results

confirmed his views.

3.1 The luminiferous ether, a short lived hypothesis

In Leibniz Space-Time (as well as in Newton Space-Time) relative velocities behave addi-

tively. In that setting, it is with respect to at most one particular reference frame that light

can propagate with the same velocity in all directions. Physicists introduced a new hy-

pothesis: electromagnetic waves were considered as vibrations of an hypothetic, very sub-

tle, but highly rigid medium called the luminiferous ether, everywhere present in space,

even inside solid bodies. They thought that it was with respect to the ether’s reference

frame that light propagates at the same velocity in all directions. This new hypothesis

amounts to come back to Newton’s absolute Space identified with the ether. There were

even physicists who introduced additional complications, by assuming that the ether, par-

tially drawn by the motion of moving bodies, could deform with time!

— But if the luminiferous ether really exists, accurate measurements of the velocity

of light in all directions should allow the determination of the Earth’s relative velocity

with respect to the ether!

— Good remark! These measurements were made several times, notably by Albert

Abraham Michelson (1852–1931) and Edward Williams Morley (1838–1923), between

1880 et 1887. No relative velocity of the Earth with respect to the luminiferous ether

could be detected.

These results remained not understood until 1905, despite many attempts. The most

interesting of these attempts was that due to Hendrik Anton Lorentz (1853–1928) and
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George Francis FitzGerald (1851–1901). Independently, they proposed the following hy-

pothesis: when a rigid body, for example a rule or the arm of an interferometer, is moving

with respect to the luminiferous ether, that body contracts slightly in the direction of its

relative displacement.

— So that is the famous relativistic contraction my teacher spoke about!

— No! Not at all! Lorentz and FitzGerald considered that contraction as a true physi-

cal effect of the relative motion of a body with respect to the ether. This assumption is now

completely abandoned, together with the luminiferous ether! The relativistic contraction

of lengths and dilation of times has nothing to do with it: rather than a real phenomenon,

it is only an appearance, like the following effect of perspective. Imagine that you look at

a 20 centimeters rule, from a distance of, say two meters from its center. That rule looks

shorter when it is not perpendicular to the straight line which joins your eye to its center

than when it is. It may even seem to be reduced to a point when it lies along that straight

line. As we will soon see, the relativistic contraction of lengths and dilation of times has

a similar origin.

3.2 Minkowski Space-Time

Einstein was the first 2 to understand (in 1905) that the results of Michelson and Morley

experiments could be explained by a deep change of the properties ascribed to Space and

Time. At that time, his idea appeared as truly revolutionary. But now it may appear as

rather natural, if we think along the following lines:

When we dropped Newton Space-Time in favour of Leibniz Space-Time, we recognized

that there is no absolute Space, but that Space depends on the choice of a reference frame.

Maybe Time too is no more absolute than Space, and depends on the choice of a reference

frame!

— But if we drop absolute Time, which properties are left to our Space-Time?

— In 1905, Einstein implicitly considered that Space-Time still was a 4-dimensional

affine space, which will be called Minkowski Space-Time and will be denoted by M. He

implicitly considered too that translations of M leave its properties unchanged, and he

assumed that the principe of inertia still holds true in M when expressed without the use

of reference frames:

The world line of any free particle is a straight line.

He also kept the notion of a Galilean frame. In M, a Galilean frame is determined by

a direction of straight line (not any straight line, a time-like straight line, as we will see

below). Given a Galilean frame R, Minkowski Space-Time M can be split into a product

ER ×TR of a three-dimensional Space ER and a one-dimensional Time TR, which both

depend on R. Let me recall that in Leibniz Space-Time U, a Galilean frame R allowed us

to split U into a product ER ×T of a three-dimensional Space ER, which depended on R,

and the one-dimensional absolute Time T, which did not depend on R. That is the main

difference between Leibniz’s and Einstein’s views about Space and Time.

Under these hypotheses, the properties of Space-Time follow from two principles:

• the Principle of Relativity: all physical laws have the same expression in all Galilean

frames;

2 The great French mathematician Jules Henri Poincaré (1854–1912) has, almost simultaneously and

independently, presented very similar ideas [3], without explicitly recommending to drop the concept of an

absolute Time.

7



• the Principle of Constancy of the velocity of light: the modulus of the velocity of

light is an universal constant, which depends neither on the Galilean frame with

respect to which it is calculated, nor on the motion of the source of that light.

— You said that a direction of straight line was enough to determine a Galilean frame.

But how is that possible, since we no more have an absolute Time?

— That determination will follow from the pinciple of constancy of the velocity of

light. Let us call light lines the straight lines in M which are possible world lines of light

signals. Given an event A ∈M, the light lines through A make a 3-dimensional cone, the

light cone with apex A; the two layers of that cone are called the past half-cone and the

future half-cone with apex A. Since it is assumed that translations leave unchanged the

properties of Space-Time, the light cone with another event B as apex is deduced from the

light cone with apex A by the translation which maps A onto B.

Apart from light lines, there are two other kinds of straight lines in M:

• time-like straight lines, which lie inside the light cone with any one of their elements

as apex;

• and space-like straight lines, which lie outside the light cone with any of their ele-

ment as apex.

A

A
g
1

A1

Ad
1

A2
LdAdAAgLg

ER,A

ER,A1

ER,A2

ER,A1

A

A1

A2

A
g
1

Ad
1

S

Lg A Ld

Plane section View in 3 dimensions

Figure 3: Construction of Space and Time relative to a Galilean frame.

I can now explain how the direction of a time-like straight line A determines a Galilean

frame R. That frame is such that the rigid bodies at rest in it are those whose all material

points have, as world lines, straight lines parallel to A. The straight lines parallel to A

will be called the isochorous lines 3 of the reference frame R; each of these lines is a

set of events which all happen at the same place in the Space ER of our frame R. For

each event M ∈M, the set of all other events which occur at the same time as M, for the

Time TR of our Galilean frame R, will be called the isochronous subspace through M,

for the Galilean frame R. It is a 3-dimensional affine subspace ER,M of M containing the

event M, and the other isochronous subspaces for R are all the 3-dimensional subspaces

3 The word isochorous, already used in Thermodynamics, refers here to a set of events which all occur

at the same spatial location at various times, in similarity with the word isochronous which refers to a set

of events which all occur simultaneously in time at various spatial locations.
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of M parallel to ER,M. They are determined by the property: the length covered by a light

signal, calculated in the reference frame R, during a given time interval, also evaluated in

that reference frame, is the same in any two opposite directions.

In a schematic 2-dimensional Space-Time (or in a plane section containing A of the

“true” 4-dimensional Space-Time), the direction of isochronous subspaces is easily ob-

tained as shown on the left part of Figure 3: we take the two light lines Lg and Ld through

an event A ∈ A (the red lines on that figure); we take another event A1 ∈ A, for example

in the future of A, and we build the parallelogram AA
g
1 A2 Ad

1 with two sides supported by

Lg and Ld , with A as one of its apices and A1 as center. The isochronous subspaces are

all the straight lines parallel to the space-like diagonal A
g
1 Ad

1 of that parallelogram. Three

of these lines are drawn (in blue) on Figure 3, ER,A, ER,A1
and ER,A2

.

— Why?

— A light signal starting from A covers, during the time interval between events A

and A1, the lengths A1 A
g
1 towards the left and A1 Ad

1 towards the right. These lengths are

equal because A
g
1 Ad

1 is the diagonal of a parallelogram whose center is A1.

— What for the “true” 4-dimensional Minkowski Space-Time M ? And what are the

Space ER and the Time TR of our reference frame R?

A = B

A
g
1

A1

Ad
1

A2

B1

B2

B
g
1

Bd
1

LdAB
Lg

EA

EA

EB

EB

Figure 4: Change of Galilean reference frame.

— It is the same, as shown on the right side of Figure 3. Take the event A2 on the light

line A such that A1 is the middle point of AA2. Consider the future light half-cone with

apex A and the past light half-cone with apex A2. Their intersection is a 2-dimensional

sphere S. The unique affine hyperplane ER,A1
which contains S is an isochronous subspace

for the Galilean frame determined by the direction of A (in blue on Figure 3). The other

isochronous subspaces for that Galilean frame are all the hyperplanes parallel to ER,A1
.

The Space ER is the set of all the isochorous lines, i.e the set of all straight lines parallel to

A, and the Time TR the set of all isochronous subspaces. Minkowski Space-Time M splits

into the product ER ×TR, or in other words can be identified with that product, because a

pair made by an isochorous line and an isochronous subspace determine a unique element

of M, the event at which they meet.

— What happens if you change your Galilean frame?

— Of course, as for Galilean frames in Leibniz Space-Time, the direction of iso-

chorous lines (the straight world lines of points at rest with respect to the chosen Galilean
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frame) is changed. Moreover, contrary to what happened in Leibniz Space-Time, the di-

rection of isochronous subspaces is also changed! Therefore, the chronological order of

two events can be different when it is appreciated in two different Galilean frames!

3.3 Metric properties of Minkowski Space-Time

Up to now, we have compared the lengths of two straight line segments in M only when

they were supported by parallel straight lines. That was allowed by the affine structure

of M. We need more, because the spectral lines of atoms allow us to build clocks and to

compare time intervals measured in two different Galilean frames.

3.4 Comparison of times

B′

B1

B2

B
g
1

Bd
1

A′

A = B

A
g
1

A1

Ad
1

A2

LdAB
Lg

ERA, A

ERA, A

ERB, B

ERB, B

ERB, B1

ERB, B1

ERA, A1

ERA, A1

Figure 5: Comparison of times.

Let AA1 and AB1 be two straight line segments supported by two different time-like

straight lines A and B, which meet at the event A. Let RA and RB be the Galilean frames

determined by the directions of A and B, respectively. We assume that the time intervals

corresponding to AA1 measured in RA, and to AB1 measured in RB, are the same. Let

B′ be the event at which the time-like straight line B meets the isochronous subspace

ERA,A1
containing A1 of the Galilean frame RA (figure 4). Since the events A1 and B′

are synchronous for RA, the time interval corresponding to AB1 appears longer than the

time interval corresponding to AA1 when both are observed in the reference frame RA,

by the ratio
AB1

AB′
. That ratio is the ratio of dilation of times of the Galilean frame of

RB, when observed in the Galilean frame RA. Similarly,
AA1

AA′
is the ratio of dilation of

times of the Galilean frame RA when observed in the Galilean frame RB. According to

the Principle of Relativity, each one of these two Galilean frames must play the same

role with respect to the other, which implies the equality
AA1

AA′
=

AB1

AB′
. By a well known

property of hyperbolae, that equality holds if and only if A1 and B1 lie on the same arc of

hyperbola which has the light lines Ld and Lg (which meet at A and are contained in the

two-dimensional plane which contains A and B) as asymptotes. Or more generally, on

the same hyperboloid with the light cone of A as asymptotic cone.
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Figure 6: Comparison of lengths.

3.5 Comparison of lengths

The comparison of lengths on two non-parallel space-like straight lines is similar to the

comparison of time intervals. Let AAd and ABd be two segments supported by two space-

like straight lines which meet at the event A. They are of equal length if and only if Ad

and Bd lie on the same hyperboloid with the light cone of A as asymptotic cone.

4 Conclusion

The comparison of time intervals and lengths presented above allows a very natural intro-

duction of the pseudo-Euclidean metric of Minkowski Space-Time. The construction of

isochronous subspaces in two different Galilean frames, as presented above, leads to the

formulas for Lorentz transformations with a minimum of calculations. The pictures we

have presented allow a very easy explanation of the apparent contraction of lengths and

dilation of times associated to a change of Galilean frames and a very simple explanation,

without complicated calculations, of the (improperly called) paradox of Langevin’s twins.

By explaining that the affine structure of Space-Time should be questioned, a smooth

transition towards General Relativity, suitable from children from 8 to 108 years old,

seems possible.

Acknowledgements. The author thanks the team “Analyse algébrique” of the “Institut de
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