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I. Introduction.

More than two hundred years before J.C., Archimedes
undestood the basic principles of Statics. The mathematical
formulation of the laws of Dynamics was developed much later,
during the XVI-th, XVII-th and XVIII-th centuries, and reached a
state of maturity at the end of the XIX-th century.

New views about Space and Time appeared at the beginning of
the XX-th century, with the Special and General Relativity
theories. Their integration in the mathematical description of the
motion of mechanical systems was surprisingly easy, but at a
price : the introduction of the concept of Field, made essential
by the fact that actions at a distance between material objects
are no more admitted in Relativity theories.
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I. Introduction (2)

In this lecture I will present the main ideas which allowed the
transition from Statics to Dynamics and the development of a
usable mathematical formulation of the motion of mechanical
systems. Newton’s laws, d’Alembert’s Principle, the method of
Virtual Work, the Lagrange differential, Lagrangian and
Hamiltonian formulations of Dynamics will be discussed.

The geometric formulation of relations between the Lagrangian
and the Hamiltonian formalisms, due toW.M. Tulczyjew,
explained in his nice little book “Geometric formulation of
physical theories” [10] and in some related publications [8,9]
will be presented.
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II. Statics. 1. What is Statics ?

Statics is the study of equilibria of a material system, with
respect to a given reference frame. The material system can be
made of a continuous medium (a fluid or a more general
deformable medium), or of an assembly of several parts, of
which each may act on the other parts either by contact, or by
remote actions (by means of gravitational, electrostatic or
magnetic forces). External objects, which are not parts of the
system, may also act on the system by contact or remote
actions.
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II. Statics. 2. The principles of Statics

The laws of Statics rest on two principles :

the principle of equality of action and reaction : if a part A of
a material system exerts on another part B of the system a
“force” F , the part B exerts on A the opposite “force” −F ;

the principle of vanishing of the total “force” : when a system
is in equilibrium, the sum of all “forces” which act on it vanishes.

This principle can be applied to the whole system, and to each
of its parts, since when the system is in equilibrium, each of its
parts also is in equilibrium ; for a continuous medium, it can be
applied to infinitesimal parts of the medium.

Of course when this principle is applied to some part of a
system, one must take into account all the “forces” which are
exerted on that part, by other parts of the system as well as by
external objects.
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II. Statics. 3. What is a “Force”?

But what exactly is a “Force”?
The simplest mathematical representation of a “force” acting on
a material object A set in the physical space E is a vector

attached to a point P of A ; in other words an element
−→
F ∈ TPE .

The point P is the application point of the force. Such a force
tends to displace the application point P , by a translation, in the

direction of the vector
−→
F .

Another kind of “force” is called couple (or pure moment). It is
the limit of a pair opposite forces mathematically represented by

the vectors
−→
F (ε) and −

−→
F (ε), applied to points P + ε

−→
k and

P − ε
−→
k , the dependence on ε of

−→
F (ε) being such that the total

momentum 2ε
−→
k ×

−→
F (ε) has a finite limit

−→
M when ε → 0. Such a

couple tends to rotate the material element at point P around an

axis of rotation parallel to
−→
M.
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II. Statics. 4. What is a virtual work in Statics ?

A more general mathematical representation of forces in Statics
uses the concepts of virtual infinitesimal displacement and
virtual infinitesimal work (for a given virtual infinitesimal
displacement).

A virtual infinitesimal displacement of a material object A set in

the physical space E is a vector field
−→
V defined on A. The

physical meaning of
−→
V is that one tries to apply to each point

P ∈ A an infinitesimal displacement proportional to
−→
V (P ).

The “forces”applied to the material object A are mathematically
described by a real valued function WA defined on the set of
vector fields on A, verifying

WA(
−→
V ) = 0 when

−→
V = 0 .

WA(
−→
V ) is the virtual infinitesimal work done by the forces

applied to A for the virtual infinitesimal displacement A.
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II. Statics. 4. What is a virtual work in Statics ? (2)

The set of all vector fields on A being very large, one generally
considers only virtual infinitesimal displacements which belong
to a finite-dimensional subset of the set of all vector fields. The
choice of this subset is guided by physical considerations.

For example, if A is a rigid body, one often uses vector fields on
A which belong to the Lie algebra of infinitesimal Euclidean
displacements of A.

The choice of the function WA is guided by physical
considerations. The simplest choice is a linear function : with
such a choice, the “forces” applied to the material element A
are mathematically described by an element of the dual space
of the space of infinitesimal displacements. Therefore, the
“forces” applied to a rigid body are usually described by an
element (sometimes called torsor) of the dual space of the Lie
algebra of infinitesimal Euclidean displacements.
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II. Statics. 4. What is a virtual work in Statics ? (3)

Remarks
1. Infinitesimal Euclidean displacements are used as
infinitesimal virtual displacements not only for solids, because if
one assumes that the forces internal to the material element A
only depend on the distances between its internal parts, the
virtual infinitesimal work made by these internal forces vanishes
when the infinitesimal virtual displacement preserves distances.

2. For material elements with an internal structure (for
example magnetic materials, or liquid crystals) fields on A more
general than vector fields can be used as virtual infinitesimal
displacements (see for example the books by Darryl Holm) [1].

3. Several authors, for exampleWlodzimierz Tulczyjev [10],
have used functions more general than linear functions for the
mathematical description of the virtual infinitesimal work of
forces.
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II. Statics. 4. The method of virtual works in Statics

According to the second principle of Statics, when a material
system is in equilibrium the total forces which act on it, and on
each of its parts, vanishes.

Since WA(
−→
V ) = 0 when

−→
V = 0, when a part A of the material

system is in equilibrium, the virtual infinitesimal work WA(
−→
V ) of

forces exerted on A vanishes for all its possible virtual

infinitesimal displacements
−→
V . Using this property is called the

method of virtual works in Statics.

A suitable choice of the space of virtual infinitesimal
displacements often allows important simplifications : for
example when the virtual infinitesimal displacements used are
infinitesimal Euclidean displacements, the virtual infinitesimal
work of internal forces is zero, so one has to calculate only the
virtual infinitesimal work of external forces, exerted on A by
other parts of the system or by external objects.
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III. Dynamics. 1. Newtonian Dynamics

Dynamics is the study of motions of a material system.

Classical, or Newtonian (i.e. non relativistic) Dynamics rests of
the law, formulated by Isaac Newton in his famous
book Philosophiae naturalis principia mathematica [6], wich

states that when a force
−→
F acts on a material point, the

acceleration −→γ of this material point is proportional to
−→
F , the

coefficient of proportionality m being the mass of the material
point : −→

F = m−→γ .
With this law and the law of gravitational interaction (also
formulated in his book), accoding to which the gravitational
force exerted on a material point M , of mass m, by another
material point M � of mass m� is directed towardsM � and

proportional to mm�
�
d(M,M �)

�−2
, Newton was able to explain

the motions of planets in the Solar system (previously
discovered by Johannes Kepler).
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III. Dynamics. 2. D’Alembert’s principle

Let us consider a material system which moves in the physical
space E . Newton’s law states that each elementary part of the
system, of mass m, on which, at time t, the total force exerted

by other parts of the system and by external objects is
−→
F (t), is

accelerated, with an acceleration −→γ (t) satisfying

−→
F (t) = m−→γ (t) .

D’Alembert’s principle is a way to reduce problem in Dynamics
to an equivalent problem in Statics. It says that
−→
F fictitious(t) = −m−→γ (t) is a fictitious force exerted, at time t, on
the elementary mass m when it is accelerated at an
acceleration −→γ (t), and that the motion of this mass element is

such that the total force which acts on it, real
−→
F (t) plus fictitious

−→
F fictitious(t), vanishes identically at each time t :

−→
F (t) +

−→
F fictitious(t) = 0 , with

−→
F fictitious(t) = −m−→γ (t) .
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III. Dynamics. 3. The method of virtual work in Dynamics

Since d’Alembert’s principle allows to reduce any problem in
Dynamics to an equivalent problem in Statics, the method of
virtual works can be used in Dynamics as well as in Statics. The
method often offers a very convenient way for the derivation of
the equations of motion of a mechanical system.

The method consists in writing that the motion of every part A of
the material system is such that at any time, the virtual
infinitesimal work of all the forces (real and fictitious) applied to
A vanishes, for any virtual infinitesimal displacement of A.

Of course, the virtual infinitesimal displacements considered
affect only the position of the various parts of A in Space, at a
given fixed time.
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III. Dynamics. 4. Lagrange dynamics.

In his famous book Mécanique analytique [3], Lagrange uses an

n+ 1-dimensional manifold �Q as configuration space-time ; a

surjective submersion θ : �Q → T maps �Q onto the interval T of
possible values of the time. In practice, when an origin and a
unit of time are chosen, T is identified with an interval of the
real line R. Each t ∈ T is called a time, and the n-dimensional
manifold Qt = θ−1(t) is the set of possible configurations of the
system at time t. In local coordinates adapted to the

submersion θ : �Q → T

�q = (t, q1, . . . , qn) , θ : (t, q1, . . . , qn) �→ t .

A motion of the system is a smooth section c : T → �Q of the
submersion θ. In local coordinates

t �→ c(t) =
�
t, q1(t), . . . , qn(t)

�
.
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III. Dynamics. 4. Lagrange dynamics (2).

Assuming that a unit of length has been chosen, the physical
space E is identified with a 3-dimensional affine Euclidean
space. For each material element α of the system, of mass mα

(a positive number, when a unit of mass has been chosen),

there is a smooth mapMα : �Q→ E , whose image Mα(�q) is the
position occupied in Space by the material element α when the
time and the configuration of the mechanical system are

mathematically described by the element �q ∈ �Q. Following
Lagrange, we will first consider a particular material element α.
At the end of the calculation we will make the sum over all the
material elements of the system.

For a motion t �→ c(t) of the system, the velocity and the
momentum of the material element α are

−→
V α(t) =

−−→
dMα ◦ c(t)

dt
, −→p α(t) = mα

−→
V α(t) .
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III. Dynamics. 4. Lagrange dynamics (3).

Lagrange writes the fundamental law of dynamics for the
material element α

d−→p α(t)

dt
=

−→
F α

where
−→
F α is the total force exerted on the material element α.

Remarks When writing this equality, Lagrange, following
Newton, implicitly makes an assumption on the structure of the
physical Space E : the first and the second derivatives of
Mα ◦ c(t) with respect to the time t are elements of different
spaces : TMα◦c(t)E and of T−→

V (t)
(TE), respectively. It is the

triviality of the tangent bundle TE which allows to consider them

as elements of the associated Euclidean vector space
−→
E .
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III. Dynamics. 4. Lagrange dynamics (4).

The force
−→
F α is an element of the cotangent space T ∗

Mα◦c(t)
E ,

identified with
−→
E ∗ by trivialization of the cotangent bundle. The

Euclidean scalar product allows its identification with
−→
E .

By assuming the existence of the submersion θ : �Q → T ,
Lagrange, following Newton, assumes that there exists an
absolute time, the same for all parts of the mechanical system.

Then Lagrange uses the principle of virtual work : he considers
an infinitesimal virtual displacement of the mechanical system
and calculates the infinitesimal virtual work made by the time

derivative
d−→p α(t)

dt
of the momentum −→p α(t) of the material

element α, and by the force
−→
F α exerted on that element. And

he writes the equality of these virtual infinitesimal works.
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III. Dynamics. 4. Lagrange dynamics (5).

Following Lagrange, we will denote by δq the virtual infinitesimal
displacement, although this notation is misleading : it is not a
differential form, but rather a vector field tangent to the

configuration space-time �Q along the the curve {c(t); t ∈ T }.

Moreover, its projection onto T must vanish : for each t ∈ T , we
must have

Tc(t)θ
�
δq
�
c(t)
��

= 0 .

This condition expresses the fact that at each time t, the virtual
infinitesimal displacement only affects the configuration of the
system, not the time t.

The tangent bundle TE being trivial, we identify it with E ×
−→
E

and we denote by pr2 : TE = E ×
−→
E →

−→
E the second projection.

We set
−→
Z α = pr2 ◦TMα : T �Q →

−→
E .
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III. Dynamics. 5. The virtual work of accelerations.

The virtual infinitesimal work of
d−→p α(t)

dt
is

W

�
d−→p α(t)

dt
, δq

�

=

�
d−→p α(t)

dt
,
−→
Z α ◦ δq ◦ c(t)

�

.

The pairing
�
,
�
on the left-hand side of this formula stands for

the Euclidean scalar product of vectors in
−→
E .

The calculation made by Lagrange (presented in Appendix A)
aims at expressing this infinitesimal virtual work as the pairing

of the vector δq
�
c(t)
�
∈ Tc(t) �Q with a covector, element of T ∗

c(t)
�Q.

The result of is the following. Let Tα : T �Q → R be the function

Tα =
mα

2
�
−→
Z α,

−→
Z α� .

Tα is the kinetic energy of the material element α.
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III. Dynamics. 5. The virtual work of accelerations (2).

Lagrange obtains the following expression for the virtual work of
dpα(t)

dt
:

W

�
d−→p α(t)

dt
, δq

�

=

�
d−→p α(t)

dt
,
−→
Z α ◦ δq ◦ c(t)

�

=

n�

i=1

��
d

dt

�
∂Tα
∂q̇i

◦
dc(t)

dt

�

−
∂Tα
∂qi

◦
dc(t)

dt

�
�
δqi ◦ c(t)

�
�

.

This virtual work is expressed as the pairing of the vector

δq ◦ c(t) ∈ Tc(t) �Q with a covector, element of T ∗
c(t)
�Q. More exactly,

since δq ◦ c(t) ∈ kerTc(t)θ, that covector is determined only up to

addition of any covector which vanishes on kerTc(t)θ ; in other

words it is an element of the quotient space T ∗
c(t)
�Q/
�
kerTc(t)θ

�
.
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III. Dynamics. 5. The virtual work of accelerations (3).

Following Lagrange, we now sum over all material elements α
of the system. The sum of all the virtual infinitesimal works

Wacc(δq) =
�

α

W

�
d−→p α(t)

dt
, δq

�

will be called the virtual infinitesimal work of acceleration
quantities of the system, for the virtual infinitesimal
displacement δq. The real valued function (defined on the

subset of T �Q made by vectors wose projection on the time axis
T is equal to 1)

T =
�

α

Tα

is such that T ◦
dc(t)

dt
is the total kinetic energy of the system

when its motion is t �→ c(t).
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III. Dynamics. 5. The virtual work of accelerations (4).

When the system is made by a finite number of material points,
the sums over all values of α are finite. In other cases these
sums should be replaced by integrals.

Finally Lagrange obtains for the virtual infinitesimal work of
acceleration quantities of the system

Wacc(δq)

=

n�

i=1

��
d

dt

�
∂T

∂q̇i
◦
dc(t)

dt

�

−
∂T

∂qi
◦
dc(t)

dt

�
�
δqi ◦ c(t)

�
�

.

This virtual work is expressed as the pairing of the vector

δq ◦ c(t) ∈ Tc(t) �Q with a covector, element of T ∗
c(t)
�Q. More exactly,

since δq ◦ c(t) ∈ kerTc(t)θ, that covector is determined only up to

addition of any covector which vanishes on kerTc(t)θ ; in other

words it is an element of the quotient space T ∗
c(t)
�Q/
�
kerTc(t)θ

�
.
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III. Dynamics. 6. The virtual work of forces.

The virtual work of the force
−→
F α exerted on the material

element α

W(
−→
F α , δq) =

�−→
F α,

−→
Z α ◦ δq ◦ c(t)

�

can be expressed in terms of the pull-back Ψα = M∗
α(
−→
F α) of

−→
F α

(considered as a covector, element of T ∗
Mα◦c(t)

E) by the map

Mα : �Q → E . We may write

W(
−→
F α , δq) =

�
Ψα

�
c(t)
�
, δq ◦ c(t)

�
.

Summing over all the material elements α, we obtain the virtual
work of forces acting on all material elements of the system

Wforces(δq) =
�
Ψ
�
c(t)
�
, δq ◦ c(t)

�
, with Ψ =

�

α

Ψα .
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III. Dynamics. 7. The Lagrange equations

By writing Ψ
�
c(t)
�
, we assumed that the applied forces only

depend on the configuration of the system and on the time ;
under this assumption, Ψ is a differential 1-form on the

configuration space-time �Q of the system (defined up to addition
of a form which vanishes on kerTθ ; in other words, Ψ is a

smooth section of the bundle
�
T ∗ �Q/(ker Tθ)0

�
→ �Q). More

generally, if there are forces depending on the velocities of

some parts of the system, Ψ is a semi-basic 1-form on T �Q.

The mechanical system’s equations of motion are obtained by
writing that, for any virtual infinitesimal displacement δq,

Wacc(δq) = Wforces(δq) , or in local coordinates,

�
d

dt

�
∂T

∂q̇i
◦
dc(t)

dt

�

−
∂T

∂qi
◦
dc(t)

dt

�
�
δqi ◦ c(t)

�
= Ψi ◦ c(t) .

Geometry of Manifolds and Mathematical Physics, Krakow, 27th June to 1st July 2011. From Statics to Dynamics – p. 28/91



III. Dynamics. 7. The Lagrange equations (2)

The applied forces are said to be conservative when there

exists a smooth function Φ : �Q → R such that

Ψi =
∂Φ

∂qi
.

The equations of motion then take the form

d

dt

�
∂T

∂q̇i
◦
dc(t)

dt

�

−
∂T

∂qi
◦
dc(t)

dt
=
∂Φ

∂qi
◦ c(t) , or

d

dt

�
∂L

∂q̇i
◦
dc(t)

dt

�

−
∂L

∂qi
◦
dc(t)

dt
= 0 , with

L ◦
dc(t)

dt
= T ◦

dc(t)

dt
+ Φ ◦ c(t) .
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III. Dynamics. 7. The Lagrange equations (3)

The real-valued function L, defined on the subset of T �Q of
vectors whose projection on the time axis T is equal to 1, is
called the Lagrangian, and the equations

d

dt

�
∂L

∂q̇i
◦
dc(t)

dt

�

−
∂L

∂qi
◦
dc(t)

dt
= 0

are the famous Lagrange equations.

In local coordinates (t, q1, . . . , qn, q̇1, . . . , q̇n) they have the well
known expression

d

dt

�
∂L

∂q̇i

�

t, q1(t), . . . , qn(t),
dq1(t)

dt
, . . . ,

dqn(t)

dt

��

−
∂L

∂qi

�

t, q1(t), . . . , qn(t),
dq1(t)

dt
, . . . ,

dqn(t)

dt

�

= 0 .
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III. Dynamics. 8. The Lagrange differential

In the Lagrange equations of our mechanical system, le
Lagrangian L is the sum of the kinetic energy T (function

defined on the subset T 1 �Q of T �Q of vectors whose projection on

the time axis T is equal to 1) and of a potential Φ (defined on �Q)

composed with the projection τ �Q : T �Q→ �Q.

However, Lagrange equations can be written with any smooth

function L defined on T 1 �Q as Lagrangian. For a given smooth

section c of θ : �Q → T and a given time t ∈ T , the left hand side
of the Lagrange equations

d

dt

�
∂L

∂q̇i
◦
dc(t)

dt

�

−
∂L

∂qi
◦
dc(t)

dt

only depends of the 2-jet j2c(t) of the section c at point t, and

takes its values in the quotient space T ∗
c(t)
�Q/(kerTc(t)θ)

0.
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III. Dynamics. 8. The Lagrange differential (2)

Therefore, the Lagrangian L determines a smooth bundle map

ΔL : J2
�
Γ(θ)

�
→ T ∗ �Q/(kerTθ)0

called the Lagrange differential of L, defined on the space

J2
�
Γ(θ)

�
of 2-jets of sections of the projection θ : �Q → T , with

values in the quotient T ∗ �Q/(ker Tθ)0 of the cotangent bundle

T ∗ �Q by the rank 1 bundle of covectors which vanish on kerTθ.

T ∗ �Q/(kerTθ)0 is a Poisson manifold since it is the quotient of

the symplectic manifold (T ∗ �Q,ω �Q
) by a foliation whose leaves

are 1-dimensional, hence isotropic. Its symplectic leaves are its
submanifolds on which the time function θ (composed with the

projection onto �Q) is constant. For each t ∈ T , the symplectic
leaf which projects on t is symplectically diffeomorphic to the
cotangent bundle T ∗Qt, with Qt = θ−1(t). This leaf is the phase
space of the system at time t.
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III. Dynamics. 8. The Lagrange differential (3)

W.M. Tulczyjev [8] has shown that the Lagrange differential is
part of a complex, the Lagrange complex, which plays an
inportant part in the inverse problem of calculus of variations.
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III. Dynamics. 9. Hamilton’s least action principle

For each smooth section c : [t0, t1] → �Q of the projection θ : �Q,
the action integral is

S(c) =

� t1

t0

L ◦
dc(t)

dt
dt .

The famous Irish scientistWilliam Rowan Hamilton [2] has
shown that the variation of S(c) for an infinitesimal variation δc of

c which leaves fixed the end points
�
t0, c(t0)

�
and

�
t1, c(t1)

�
,

vanishes if and only if ΔL

�
j2c(t)

�
= 0 for all t ∈ [t0, t1]. We have

δS(c, δc) =

� t1

t0

�
ΔL

�
j2c(t)

�
, δc(t)

�
dt .

The pairing � , � in the right hand side is the pairing of the

equivalence class of covectors ΔL

�
j2c(t)

�
∈ T ∗

c(t)
�Q/(kerTc(t)θ)

0

with the vector δc(t) ∈ kerTc(t)θ ⊂ Tc(t) �Q.
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III. Dynamics. 10. The energy function

Let us define on T 1 �Q the energy function

E(t, q, q̇) =

n�

i=1

q̇i
∂L(t, q, q̇)

∂q̇i
− L(t, q, q̇) .

and the 1-form

σ =

n�

i=1

∂L(t, q, q̇)

dq̇i
dqi − E(t, q, q̇) dt ,

For any smooth section c : [t0, t1] → �Q of θ, the action integral
can be expressed as (the proof is presented in Appendix A)

S(c) =

� �
dc(t)

dt

�∗

σ .
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III. Dynamics. 11. Intrinsic form of the Lagrange equations

We recall that a smooth section c : [t0, t1] → �Q of θ satisfies the
principle of virtual work if and only if the action integral S(c) is
stationary for the intinitesimal variations of c with fixed
endpoints.

Using the above expression of the action integral, on can prove

that c : [t0, t1] → �Q of θ satisfies the principle of virtual work if
and only if, for each t ∈]t0, t1[,

i

�
d2c(t)

dt2

�

dσ = 0 .

This equation is the intrisic form of the Lagrange equations.
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III. Dynamics. 12. The Legendre map LL

The Legendre map LL, expressed in local coordinates (t, qi, q̇i)

on T 1 �Q (submanifold of T �Q on which ṫ = 1) is

LL : (t, qi, q̇i) �→

�

t, qi, pi =
∂L(t, qi, q̇i)

∂q̇i

�

.

It is defined on T 1 �Q, and takes its values in the quotient bundle

T ∗ �Q/(kerTθ)0.

The Lagrangian L is said to be regular when the Legendre map
LL is everywhere of rank 2n+ 1, and hyperregular when LL is a
diffeomorphism.

When L is regular, dσ is of rank 2n (see the proof in Appendix

A), and there exists on T 1 �Q a unique vector field XL contained
in ker dσ whose projection on T is equal to 1. Integral curves of
this vector field are motions of the mechanical system.
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III. Dynamics. 13. The manifold of motions

Still when L is regular, the manifold of motions of the
mechanical system is the quotient of the presymplectic manifold

(T 1 �Q, dσ) by its characteristic foliation determined by ker dσ.
J. M. Souriau [7] has shown that it has indeed the structure of a
smooth symplectic manifold (maybe non-Hausdorff).
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III. Dynamics. 14. The Hamiltonian formalism

We now assume that �Q = T ×Q, where T is the time axis and

Q a configuration manifold. The map θ : �Q→ T is the first

projection. The codimension 1 submanifold T 1 �Q can be

identified with T × TQ, and the quotient manifold T ∗ �Q/(kerTθ)0

with T × T ∗Q. The Legendre map determined by the
Lagrangian L can therefore be considered as a map
LL : T × TQ→ T × T ∗Q,

LL : (t, qi, q̇i) �→

�

t, qi, pi =
∂L(t, q, q̇)

∂q̇i

�

, 1 ≤ i ≤ n .

The cotangent bundle T ∗ �Q can be identified with T ∗T × T ∗Q.
We define the map

�LL : T × TQ→ T ∗T × T ∗Q , �LL = LL − E dt .
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III. Dynamics. 14. The Hamiltonian formalism (2)

We still assume that �Q = T ×Q and, in addition, that the
Lagrangian L is hyperregular. The Hamiltonian is the function

H = E ◦ L−1
L : T × T ∗Q → R .

We have seen that the motions of the mechanical system are

integral curves of a vector field XL, defined on T 1 �Q = T × TQ,
such that

i(XL)dσ = 0 , T θ(XL) = 1 .

The image W = �LL(T × TQ) of the map �LL is a submanifold of
T ∗T × T ∗Q, on which we can define the vector field, direct

image of XL by the map �LL : T × TQ→W ,

YL = ( �LL)∗(XL) .
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III. Dynamics. 14. The Hamiltonian formalism (3)

The map

(t, qi, pi) �→ (t, qi, pt = H(t, qi, pi)) , 1 ≤ i ≤ n ,

allows us to identify T × T ∗Q with the submanifold W of T ∗ �Q.
Using this identification of T × T ∗Q with W , the form induced on

W by the Liouville 1-form of T ∗ �Q = T ∗T × T ∗Q becomes

ηQ −H dt ,

where ηQ is the Liouville 1-form on T ∗Q

The vector field YL, now considered as defined on T × T ∗Q, is
therefore determined by

i(YL)(dηQ − dH ∧ dt) = 0 , TπT (YL) = 1 .
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III. Dynamics. 14. The Hamiltonian formalism (4)

The second equality above allows us to write

YL = XH +
∂

∂t
,

where XH is a time-dependent vector field on T ∗Q.
The first equality determining YL leads to

i(XH)dηQ = −(dH −
∂H

∂t
dt) , i(XH)dH = 0 .

The first equation shows that for each fixed time t, the value XHt

of the time-dependent vector field XH is the Hamiltonian vector
field on T ∗Q whose Hamiltonian is Ht : T

∗Q → R. The second
equation is automatically satisfied when the first equation is
satisfied.

This is the Hamiltonian formalism, equivalent to the Lagrangian
formalism when the Lagrangian L is hyperregular.
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IV. Relativistc Dynamics. 1. A new setting

In Classical Dynamics, Time is set apart from Space : the theory
fundamentally depends on the concepts of time ordering and
simultaneity of events which occur at different places in Space.

In Relativistic Physics, Time and Space are merged into a
single, structured Space-Time ; the concepts of time ordering
and simultaneity are no more universally valid.

Instantaneous action at a distance of a material objet A on
another material object B is no more admitted : the new concept
of field must be taken into account. Actions of a material object
A on another, distant material object B only occur when fields
are created (or modified) by A ; the newly created (of modified)
fields propagate until they reach B, and then act on it.

A complete theory of Relativistic Dynamics in Space-Time
should consider both material objects and fields and describe
their mutual interactions.
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IV. Relativistc Dynamics. 2. Point-like particle in a given field

However, Newton’s law, d’Alembert’s principle and the method
of virtual works still can be used for the motion of a point-like
particle in Space-Time : we only have to use the inertial
reference frame in which the particle is at rest, at the event at
which these laws are expressed.

For example, let M be the Minkowski space-time (it is an affine,
pseudo-Euclidean 4-dimensional space, the associated vector

space
−→
M being endowed with a pseudo-Euclidean scalar

product ( | ) with signature (+,−,−,−)). The world line of a
point particle M moving in M is a time-like curve C, assumed to
be smooth. We will parametrize C by the proper time of the
particle : it is the arc length s along C, measured from an origin

eventM0 = M(0). The unit vector

−−−−→
dM(s)

ds
tangent to C at the

eventM(s) determines the inertial reference frame in which the
particle is at rest at the eventM(s).
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IV. Relativistic Dynamics. 2. Point-like particle in a given field (2)

Newton’s law is (
−→
F (s) being the force)

−→
F (s) = m

−−−−→
d2M(s)

ds2
, with

�
−→
F (s)

�
�
�

−−−−→
dM(s)

ds

�

= 0 .

A virtual infinitesimal displacement of the particle at the event
M(s) is a vector −→w tangent to M at the eventM(s), space-like
with respect to the reference frame in which the particle is at

rest at the eventM(s), i.e. orthogonal to

−−−−→
dM(s)

ds
. The

corresponding infinitesimal virtual work of the acceleration
quantity of the particle is (the minus sign compensates the
definite-negativeness of the scalar product of spacelike vectors)

−

�

m

−−−−→
d2M(s)

ds2

�
�
� −→w

�

.
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IV. Relativistic Dynamics. 2. Point-like particle in a given field (3)

For an observer at rest with respect to an inertial reference
frame, in which the coordinates are (t, x, y, z), the motion of the
particle is described by the parametrized curve t �→ M ◦ s(t).

The square v2 of the velocity of the paticle with respect to the
observer is

v2 =

�
dx(t)

dt

�2

+

�
dy(t)

dt

�2

+

�
dz(t)

dt

�2

.

We set
v2 = c2 tanh2 η .

Using c2ds2 = c2dt2 − dx2 − dy2 − dz2, we see that

ds

dt
=

1

cosh η
=

�

1−
v2

c2
.
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IV. Relativistic Dynamics. 2. Point-like particle in a given field (4)

In terms of the coordinates in the observer’s frame, Newton’s
law is

−→
F (t)

cosh
�
η(t)
� =

d

dt



m cosh
�
η(t)
�
−−−−−−−−→
d
�
M ◦ s(t)

�

dt



 .

Let us choose the coordinate system in the reference frame of
the observer so that for a given value t0 of t,

dx(t)

dt

�
�
�
t=t0

= v ,
dy(t)

dt

�
�
�
t=t0

= 0 ,
dz(t)

dt

�
�
�
t=t0

= 0 .

The time component of Newton’s equation is

F0(t0)

cosh
�
η(t0)

� =
d

dt

�
m cosh

�
η(t)
�� ��
�
t=t0

.
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IV. Relativistic Dynamics. 2. Point-like particle in a given field (5)

The three space components of Newton’s equation are

Fx(t0)

cosh
�
η(t0)

� =
d

dt

�
m cosh

�
η(t)
�dx(t)

dt

� �
�
�
t=t0

,

Fy(t0)

cosh
�
η(t0)

� =
d

dt

�
m
dy(t)

dt

� �
�
�
t=t0

,

Fz(t0)

cosh
�
η(t0)

� =
d

dt

�
m
dz(t)

dt

� �
�
�
t=t0

.

By analogy with the usual Newton’s law, physicits interpret
these formulae in terms of an apparent mass of the particle in
the observer’s reference frame. This apparent mass is

m cosh
�
η(t)) for longitudinal forces (acting in the direction of the

velocity v), and m for transverse forces.
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IV. Relativistic Dynamics. 3. The Lagrangian of a free particle

Since in the Minkowski Space-Time M there is no privileged
time, the action integral for a point-like particle should be
invariant by any admissible change of parametrization of the
particle’s world line. The Lagrangin should therefore be a
homogeneous function of degree 1 on the tangent bundle TM.
For a free particle, the action integral should be expressed in
geometric, invariant terms. The most obvious expression is

�S(�c) = k

� s1

s0

�
�
�
�

�−−−−→
dM(s)

ds

�
�
�

−−−−→
dM(s)

ds

�

ds .

The constant k can be determined by looking at the classical
limit :

k = −mc .
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IV. Relativistic Dynamics. 3. The Lagrangian of a free particle

When the world line of the particle is parametrized by the time t
relative to some inertial frame, the action integral becomes

�S(�c) = −mc

� t1

t0

�

c2 −
�
v(t)
�2
dt .

When the relative velocity v of the particle in the considered
reference frame is small, this action integral becomes
approximately

� t1

t0

m

�

−c2 +

�
v(t)
�2

2

�

dt .

We recognize the opposite of the rest energy mc2 of the particle,
which plays no part in the search of extremals, plus its kinetic

energy
m
�
v(t)
�2

2
relative to the considered reference frame.
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V. The Tulczyjew isomorphisms. 1. Canonical involution of T (TQ).

I will now describe the very nice geometric interpretation of the
relations between the Lagrangian and the Hamiltonian
formalisms, due toW.M. Tulczyjew. Let Q be a smooth manifold
(the configuration manifold of a mechanical system). The
second tangent bundle T (TQ) has two different vector bundle
structures :

the tangent bundle structure τTQ : T (TQ) → TQ,

the prolongation to vectors TτQ : T (TQ) → TQ of the vector
bundle structure τQ : TQ→ Q.

Local coordinates on Q, TQ and T (TQ) will be denoted by (xi),

(xi, vj) and (xi, vj , ẋk, v̇l) respectively (1 ≤ i, j, k, l ≤ n).
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V. The Tulczyjew isomorphisms. 1. Canonical involution of T (TQ) (2).

We have the commutative diagram

T (TQ)
TτQ

� TQ

TQ

τTQ

� τQ
� Q

τQ

�

(xi, vj , ẋk, v̇l)
TτQ

� (xi, ẋk)

(xi, vj)

τTQ

�
πN

� (xi)

τQ

�

There exists a canonical involutive vector bundle isomorphism
κQ : T (TQ) → T (TQ) which exchanges the two vector bundle
structures of T (TQ). Its expression in local coordinates is

κQ : (xi, vj , ẋk, v̇l) �→ (xi, ẋk, vj , v̇l) .
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V. The Tulczyjew isomorphisms. 1. Canonical involution of T (TQ) (3).

The isomorphism κQ makes the following diagram
commutative :

T (TQ)
κQ

� T (TQ)

TQ

τTQ

�

�
idTQ

� TQ

TτQ

�

(xi, vj , ẋk, v̇l)
κQ

� (xi, ẋk, vj , v̇l)

(xi, vj)

τTQ

�

�
idTQ

� (xi, vj)

TτQ

�
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V. The Tulczyjew isomorphisms. 2. The αQ isomorphism.

W.M. Tulczyjew defined the vector bundle isomorphism αQ as

the transpose of κQ :
�
T (TQ), τTQ, TQ

�
→
�
T (TQ), T τQ, TQ

�
.

The vector bundle
�
T (TQ), τTQ, TQ

�
is the tangent bundle to

TQ. Its dual bundle is
�
T ∗(TQ), πTQ, TQ

�
, the cotangent bundle

to TQ. In local coordinates, the pairing by duality is

�
(xi, vj , pxk , pvl), (x

i, vj , ẋk, v̇l)
�
=

n�

k=1

�pxk , ẋk�+

n�

l=1

�pxl, v̇l� .

The dual of the vector bundle
�
T (TQ), T τQ, TQ

�
is

�
T (T ∗Q, TπQ, TQ)

�
. The pairing by duality is

�
(xi, pxk , ẋj , ṗxl), (xi, vl, ẋj , v̇k)

�
=

n�

k=1

�pxk , v̇k�+

n�

l=1

�ṗxl , vl� .
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V. The Tulczyjew isomorphisms. 2. The αQ isomorphism (2).

By writing that αQ is the transpose of κQ, we easily obtain its
expression in local coordinates :

T (T ∗Q)
αQ

� T ∗(TQ)

TQ

TπQ

�

�
idTQ

� TQ

πTQ

�

(xi, pxk , ẋj , ṗxl)
αQ

� (xi, ẋj , ṗxl , pxk)

(xi, ẋj)

TπQ

�

�
idTQ

� (xi, ẋj)

πTQ

�
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V. The Tulczyjew isomorphisms. 3. The βQ isomorphism.

The canonical symplectic 2-form of T ∗Q determines, up to the
choice of a sign, an isomorphism between the tangent and the
cotangent bundles to T ∗Q. Therefore, there exists another
vector bundle isomorphism

βQ :
�
T (T ∗Q), τT ∗Q, T

∗Q
�
→
�
T ∗(T ∗Q), πT ∗Q, T

∗Q
�
.

With a suitable choice of the sign of βQ,

αQ
∗ ωTQ = βQ

∗ ωT ∗Q ,

where ωTQ and ωT ∗Q are the canonical symplectic 2-forms on
T ∗(TQ) and T ∗(TQ), respectively. The choice of sign of βQ for
which this equality holds is

βQ : v �→ i(v)ωQ .
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V. The Tulczyjew isomorphisms. 3. The βQ isomorphism (2).

One easily obtains the βQ isomorphism’s expression in local
coordinates :

T (T ∗Q)
βQ

� T ∗(T ∗Q)

T ∗Q

τT ∗Q

�

�
idT ∗Q

� TQ

π∗TQ

�

(xi, pxk , ẋj , ṗxl)
βQ

� (xi, pxk , ṗxl ,−ẋj)

(xi, pxk)

τT ∗Q

�

�
idT ∗Q

� (xi, pxk)

πT ∗Q

�
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V. The Tulczyjew isomorphisms. 4. The isomorphisms αQ and βQ.

T ∗(T ∗Q) �
βQ

T (T ∗Q)
αQ

� T ∗(TQ)

T ∗Q

πT ∗Q

�

πQ
�

�

τ T
∗ Q

Q �

τQ
TQ

πTQ

�

T
π
Q

�

In local coordinates

(xi, pxk , ṗxl ,−ẋj) �
βQ

(xi, pxk , ẋj , ṗxl)
αQ
� (xi, ẋj , ṗxl , pxk)

(xi, pxk)

πT ∗Q

�

πQ
�

�

τT
∗ Q

(xi) �

τQ
(xi, ẋj)

πTQ

�

Tπ
Q

�
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V. The Tulczyjew isomorphisms. 5. The Lagrangian formalism.

Let L : TQ → R be the Lagrangian of a mechanical system. The
image dL(TQ) of its differential is a Lagrangian submanifold of�
T ∗(TQ), ωTQ

�
.

Therefore D = αQ
−1
�
dL(TQ)

�
is a Lagrangian submanifold of

�
T (T ∗Q), αQ

∗(ωTQ)
�
.

Theorem (Tulczyjew). The Lagrangian submanifold

D = αQ
−1
�
dL(TQ)

�
of T (T ∗Q) is the (maybe implicit) differential

equation which describes the motion of the mechanical system
on its phase space T ∗Q.
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V. The Tulczyjew isomorphisms. 5. The Lagrangian formalism (2).

In other words, a smooth parametrized curve c : t �→ c(t) in Q is
stationary for the action integral

S(c) =

� t1

t0

L

�
dc(t)

dt

�

dt

with respect to variations of c with fixed endpoints, if and only if

the image LL

�
dc(t)

dt

�

of the curve t �→
dc(t)

dt
by the Legendre

map L:TQ→ T ∗Q , is such that at each point, the tangent vector

d

dt
LL

�
dc(t)

dt

�

lies in D.
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V. The Tulczyjew isomorphisms. 5. The Lagrangian formalism (3).

Using the expression of the isomorphism αQ in local
coordinates, the verification of that property is easy (for a
coordinate-free proof see the book and the papers by
Tulczyjev). The submanifold D is the subset of T (T ∗Q)

D =

��

xi, pxk =
∂L(x, v)

∂vk
, ẋj , ṗxl =

∂L(x, v)

∂xl

��

.

But
dxi(t)

dt
= ẋi ,

dpxk(t)

dt
= ṗxk ,

which proves that the expression of D in local coordinates
means that we have the Lagrange equation :

d

dt

�
∂L(x, v)

∂vk

�
x(t),

dx(t)

dt

��

=
∂L(x, v)

∂xk

�

x(t),
dx(t)

dt

�

.
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V. The Tulczyjew isomorphisms. 6. The Hamiltonian formalism.

We now assume that the Lagrangian L is hyperregular.The
Legendre map LL : TQ → T ∗Q is a diffeomorphism and there
exists a smooth function (the Hamiltonian) H : T ∗Q → R such
that, in local coordinates,

H(x, p) =

�
n�

i=1

vi
∂L(x, v)

∂vi
− L(x, v)

�

◦ LL
−1(x, p) .

Theorem (Tulczyjew). The image βQ(D) of the Lagrangian
submanifold D of T (T ∗Q) is equal to −dH(T ∗Q). More precisely,

βQ ◦ αQ
−1 ◦ dL = −dH ◦ LL .

Using the expressions of αQ and βQ in local coordinates given
above, it is easy to prove that formula.
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V. The Tulczyjew isomorphisms. 7. Generalizations.

W.M. Tulczyjew has considered more general situations :

situations in which le Lagrangian L is not assumed to be
hyperregular,

or in which L is a “constrained Lagrangian”, defined on a
submanifold of TQ,

or in which it is the Hamiltonian H which is constrained,
defined on a submanifold of T ∗Q (Dirac theory of constraints).

or mechanical systems with external forces (paper [5] by
G. Marmo, W.M Tulczyjev and P. Urbański) . . .
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Thanks

I address my warmest thanks to the organizers of the
Conference “Geometry of Manifolds and Mathematical Physics”
for their kind invitation. I am glad to take part in this conference
in honour of my colleague and friend Wlodzimierz M. Tulczyjew,
whose works were for me a constant source of inspiration. I
wish him a happy birthday and many more good years !

And all my thanks to the participants for their interest in my talk !

This presentation was prepared with the laTEX class Prosper by

Frédéric Goualard.

The diagrams were drawn with the package Diagrams by

Paul Taylor.
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autonomous systems with external forces, (2001),
arXiv:math-ph/0104033v1.
6. I. Newton, Philosophia Naturalis Principia Mathematica,

London, 1687. Translated in French by Émilie du Chastelet
(1756).
7. J.-M. Souriau, Structure des systèmes dynamiques. Dunod,
Paris, 1970.
8. W.M. Tulczyjev, The Lagrange complex, Bulletin de la S.M.F.,
105 (1977), p. 419–431. Numérisé par NUMDAM,
http://www.numdam.org.
9. W.M. Tulczyjev, The Legendre transformation, Annales de
l’I.H.P., 1 (1977), p. 101-114. Numérisé par NUMDAM,
http://www.numdam.org.

Geometry of Manifolds and Mathematical Physics, Krakow, 27th June to 1st July 2011. From Statics to Dynamics – p. 66/91



References

10. W.M. Tulczyjev, Geometric Formulations of Physical
Theories, Monographs and Textbooks in Physical Science,
Bibliopolis, Napoli, 1989.
11. W.M. Tulczyjev, The origin of variational principles, (2004),
arXiv:math-ph/0405041v1.

Geometry of Manifolds and Mathematical Physics, Krakow, 27th June to 1st July 2011. From Statics to Dynamics – p. 67/91



Appendix A. The virtual work of accelerations (1).

Following Lagrange, we will denote by δq the virtual infinitesimal
displacement, although this notation is misleading : it is not a
differential form, but rather a vector field tangent to the

configuration space-time �Q along the the curve {c(t); t ∈ T }.

Moreover, its projection onto T must vanish : for each t ∈ T , we
must have

Tc(t)θ
�
δq
�
c(t)
��

= 0 .

This condition expresses the fact that at each time t, the virtual
infinitesimal displacement only affects the configuration of the
system, not the time t.

The tangent bundle TE being trivial, we identify it with E ×
−→
E

and we denote by pr2 : TE = E ×
−→
E →

−→
E the second projection.

We set
−→
Z α = pr2 ◦TMα : T �Q →

−→
E .
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Appendix A. The virtual work of accelerations (2).

The virtual infinitesimal work of
d−→p α(t)

dt
is

W

�
d−→p α(t)

dt
, δq

�

=

�
d−→p α(t)

dt
,
−→
Z α ◦ δq ◦ c(t)

�

.

The pairing
�
,
�
on the left-hand side of this formula stands for

the Euclidean scalar product of vectors in
−→
E .

The calculation made by Lagrange aims at expressing this
infinitesimal virtual work as the pairing of the vector

δq
�
c(t)
�
∈ Tc(t) �Q with a covector, element of T ∗

c(t)
�Q.

Lagrange writes

�
d−→p α(t)

dt
,
−→
Z α ◦ δq ◦ c(t)

�

=
d

dt

�−→p α(t),
−→
Z α ◦ δq ◦ c(t)

�

−

�
−→p α(t),

d

dt

�−→
Z α ◦ δq ◦ c(t)

��

.
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Appendix A. The virtual work of accelerations (3).

Important remark The virtual infinitesimal displacement δq

is initially defined as a vector field tangent to �Q along the curve
{c(t); t ∈ T }. However, by writing

�
d−→p α(t)

dt
,
−→
Z α ◦ δq ◦ c(t)

�

=
d

dt

�−→p α(t),
−→
Z α ◦ δq ◦ c(t)

�

−

�
−→p α(t),

d

dt

�−→
Z α ◦ δq ◦ c(t)

��

,

one assumes that δq is a vector field on T �Q, projectable on �Q by

the map Tτ �Q : T (T �Q) → T �Q, its projection being the vector field

δq initially defined on �Q along the curve {c(t); t ∈ T }. At a given
time t, each term of the right hand side depends on the value of

the derivative
d
�
δq ◦ c(t)

�

dt
, but the right hand side as a whole

only depends on the value of δq ◦ c(t).
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Appendix A. The virtual work of accelerations (4).

With the local coordinates (t, q1, . . . , qn, ṫ, q̇1, . . . , q̇) on T �Q, we
may write

−→
Z α(t, q

1, . . . , qn, ṫ, q̇1, . . . , q̇n) =

n�

i=1

q̇i
∂
−→
Mα

∂qi
+ ṫ

∂
−→
Mα

∂t

=

n�

i=1

q̇i
∂
−→
Z α

∂q̇i
+ ṫ

∂
−→
Z α

∂ṫ
,

the second equality following from Euler’s identity, which can be

used since
−→
Z α(t, q

1, . . . , qn, ṫ, q̇1, . . . , q̇n) is a linear function of

(ṫ, q̇1, . . . , q̇n).Thefrefore,

∂
−→
Z α

∂q̇i
=
∂
−→
Mα

∂qi
,
∂
−→
Z α

∂ṫ
=
∂
−→
Mα

∂t
.
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Appendix A. The virtual work of accelerations (5).

We may therefore write

�−→p α(t),
−→
Z α◦δq◦c(t)

�
= m

n�

i=1

�
−→
Z α ◦

dc(t)

dt
,
∂
−→
Z α

∂q̇i
◦
dc(t)

dt

�
δqi ◦ c(t)

�
�

,

with, in local coordinates,

dc(t)

dt
=

�

t, q1(t), . . . , qn(t), 1,
dq1(t)

dt
. . . ,

dqn(t)

dt

�

.

Let Tα : T �Q→ R be the function

Tα =
mα

2
�
−→
Z α,

−→
Z α� . We have :

�−→p α(t),
−→
Z α ◦ δq ◦ c(t)

�
=

n�

i=1

�
∂Tα
∂q̇i

◦
dc(t)

dt

�
�
δqi ◦ c(t)

�
.

Geometry of Manifolds and Mathematical Physics, Krakow, 27th June to 1st July 2011. From Statics to Dynamics – p. 72/91



Appendix A. The virtual work of accelerations (6).

Taking the derivative with respect to t, we get

d

dt

�−→p α(t),
−→
Z α ◦ δq ◦ c(t)

�
=

n�

i=1

d

dt

�
∂Tα
∂q̇i

◦
dc(t)

dt

�
�
δqi ◦ c(t)

�

+

n�

i=1

�
∂Tα
∂q̇i

◦
dc(t)

dt

�
d

dt

�
δqi ◦ c(t)

�
.

Similarly, we may write

�
−→p α(t),

d

dt

�−→
Z α ◦ δq ◦ c(t)

�
�

=

�

−→p α(t),

n�

i=1

d

dt

�
∂
−→
Mα

∂qi
�
c(t)
�
δqi
�
c(t)
�
��

=

�

−→p α(t),

n�

i=1

�
d

dt

�
∂
−→
Mα

∂qi
�
c(t)
�
�

δqi
�
c(t)
�
+
∂
−→
Mα

∂qi
�
c(t)
� d

dt

�
δqi
�
c(t)
��
��

.
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Appendix A. The virtual work of accelerations (7).

But we have

d

dt

�
∂
−→
Mα

∂qi
�
c(t)
�
�

=
∂

∂qi

�
d
−→
Mα

�
c(t)
�

dt

�

=
∂
−→
Z α

∂qi

�
dc(t)

dt

�

.

Therefore
�

−→p α(t),

n�

i=1

d

dt

�
∂
−→
Mα

∂qi
�
c(t)
�
�

δqi
�
c(t)
�
�

=

�

m
−→
Z α ◦

dc(t)

dt
,

n�

i=1

∂
−→
Z α

∂qi
◦
dc(t)

dt
δqi ◦ c(t)

�

=

n�

i=1

�
∂Tα
∂qi

◦
dc(t)

dt

�

δqi ◦ c(t) .
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Appendix A. The virtual work of accelerations (8).

The last term can be written
�

−→p α(t),

n�

i=1

∂
−→
Mα

∂qi
�
c(t)
� d

dt

�
δqi
�
c(t)
��
�

=

n�

i=1

��

m
−→
Z α ◦

dc(t)

dt
,
∂
−→
Z α

∂q̇i
◦
dc(t)

dt

�
d

dt

�
δqi
�
c(t)
��
�

=

n�

i=1

�
∂Tα
∂q̇i

◦
dc(t)

dt

�
d

dt

�
δqi
�
c(t)
��

.

When we gather all the terms calculated, we see that the terms

which contain
d

dt

�
δqi
�
c(t)
��

cancel. The virtual work of
d−→p α(t)

dt
for the infinitesimal virtual displacement δq is :
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Appendix A. The virtual work of accelerations (9).

W

�
d−→p α(t)

dt
, δq

�

=

�
d−→p α(t)

dt
,
−→
Z α ◦ δq ◦ c(t)

�

=

n�

i=1

��
d

dt

�
∂Tα
∂q̇i

◦
dc(t)

dt

�

−
∂Tα
∂qi

◦
dc(t)

dt

�
�
δqi ◦ c(t)

�
�

.

This virtual work is expressed as the pairing of the vector

δq ◦ c(t) ∈ Tc(t) �Q with a covector, element of T ∗
c(t)
�Q. More exactly,

since δq ◦ c(t) ∈ kerTc(t)θ, that covector is determined only up to

addition of any covector which vanishes on kerTc(t)θ ; in other

words it is an element of the quotient space T ∗
c(t)
�Q/
�
kerTc(t)θ

�
.
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Appendix B. The homogeneous Lagrangian

We recall that the Lagrangian L is defined on the codimension 1

submanifold T 1 �Q of T �Q of vectors whose projection on the time
axis T is equal to 1. The action integral

S(c) =

� t1

t0

L ◦
dc(t)

dt
dt

is defined for smooth sections c of θ : �Q→ T , i.e. for curves in �Q
parametrized by the time. It is easy to extend the definition of

the Lagarangian to an open dense subset of T �Q in such a way
that the action integral still has a meaning for geometric smooth

curves in �Q, independent of their parametrization. With

(t, q1 . . . , qn, ṫ, q̇1, . . . , q̇n) as local coordinates on T �Q, let

�L(t, q1 . . . , qn, ṫ, q̇1, . . . , q̇n) = ṫL

�

t, q1 . . . , qn, 1,
q̇1

ṫ
, . . . ,

q̇n

ṫ

�

.
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Appendix B. The homogeneous Lagrangian (2)

The function �L, defined on the open dense subset of T �Q on
which the local coordinate ṫ is not zero, is homogenous of

degree 1 on the fibres. Let �c : [s0, s1] → �Q be a smooth
parametrized curve such that s �→ θ ◦ �c(s) is a diffeomorphism of
the open interval ]s0, s1[ onto an open interval of the time axis T .
In other words, we assume that for any s ∈]s0, s1[,

d

ds

�
θ ◦ �c(s)

�
�= 0 .

Such a curve will be said to be admissible.

We define a modified action integral

�S(�c)

� s1

s0

�L

�
d�c(s)

ds

�

ds .

Geometry of Manifolds and Mathematical Physics, Krakow, 27th June to 1st July 2011. From Statics to Dynamics – p. 78/91



Appendix B. The homogeneous Lagrangian (3)

Since �L is homogeneous of degree 1, �S(�c) only depends on the

geometric curve �c
��
s0, s1]), not on its parametrization. When

[s0, s1] is an interval of T and �c a section of θ, �S(�c) = S(�c).

The vertical differential dV �L of the homogeneous Lagrangian �L

is a 1-form defined on the open dense subset of T �Q on which �L
is defined. It is called the Hilbert’s 1-form in the book [4] by
P. Malliavin. In local coordinates

� = dV �L =
∂�L

∂ṫ
dt+

n�

i=1

∂�L

∂q̇i
dqi .

It is such that for any admissible parametrized curve

�c : [s0, s1] → �Q,

�S(�c) =

� �
d�c(s)

ds

�∗

� .
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Appendix B. The homogeneous Lagrangian (4)

The 1-form σ = i∗
T 1 �Q

� induced by � on the codimension 1

submanifold T 1 �Q is expressed, with the local coordinates
(t, q1, . . . , qn, q̇1, . . . , q̇n), as

σ = i∗
T 1 �Q

� =

n�

i=1

∂L(t, q, q̇)

dq̇i
dqi − E(t, q, q̇) dt ,

where E(t, q, q̇) is the energy function, given by

E(t, q, q̇) =

n�

i=1

q̇i
∂L(t, q, q̇)

∂q̇i
− L(t, q, q̇) .

For any smooth section c : [t0, t1] → �Q of θ

S(c) =

� �
dc(t)

dt

�∗

σ .
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Appendix B. The homogeneous Lagrangian (5)

By using the fact that an admissible parametrized curve

�c : [s0, s1] → �Q satisfies the principle of virtual work if and only if

the modified action �S(�c) is stationary for all infinitesimal
variations of �c with fixed endpoints, we see that such a curve
satisfies that principle if and only if, for each s ∈]s0, s1[,

i

�
d2�c(s)

ds2

�

d� = 0 .

Similarly, a smooth section c : [t0, t1] → �Q satisfies the principle
of virtual work if and only if, for each t ∈]t0, t1[,

i

�
d2c(t)

dt2

�

dσ = 0 .

This equation is the intrisic form of the Lagrange equations.
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Appendix B. The homogeneous Lagrangian (6)

The Legendre map can be defined either with the orignial

Lagarangian L, or with the homogeneous Lagrangian �L. We will
denote these two Legendre maps LL and L�L

, respectively.

Let us first consider L�L
: T �Q→ T ∗ �Q. In local coordinates

(t, qi, ṫ, q̇i) on T �Q and (t, qi, pt, pi) on T ∗ �Q, 1 ≤ i ≤ n, it is the map

L�L
: (t, qi, ṫ, q̇i) �→

�

t, qi, pt =
∂�L(t, qi, ṫ, q̇i)

∂ṫ
, pi =

∂�L(t, qi, ṫ, q̇i)

∂q̇i

�

.

Using the definition of �L in terms of L, we have

∂�L(t, qi, ṫ, q̇i)

∂ṫ
= −E

�

t, qi,
q̇i

ṫ

�

,
∂�L(t, qi, ṫ, q̇i)

∂q̇i
=
∂L

∂q̇i

�

t, qi,
q̇i

ṫ

�

,

where E is the energy function
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Appendix B. The homogeneous Lagrangian (7)

Therefore, expressed in terms of L and E,

L�L
: (t, qi, ṫ, q̇i) �→

�

t, qi, pt = −E

�

t, qi,
q̇i

ṫ

�

, pi =
∂L

∂q̇i

�

t, qi,
q̇i

ṫ

��

.

The Legendre map L�L
cannot be a local diffeomorphism : its

rank is at most equal to 2n+ 1, since its values only depend on

the ratios
q̇i

ṫ
.

The Lagrangian L is said to be regular if the Legendre map L�L

is everywhere of rank 2n+ 1 ; its restriction to the submanifold

T 1 �Q of T �Q is then a local diffeomorphism of T 1 �Q on its image.

The Lagrangian L is said to be hyperregular if L�L
, restricted to

T 1 �Q, is a global diffeomorphism of T 1 �Q onto its image.
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Appendix B. The homogeneous Lagrangian (8)

Hilbert’s 1-form � was defined above as the vertical differential
dV �L of the homogeneous Lagrangian. One may check that it
can be defined also as the pull-back of the Liouville 1-form η �Q

of

T ∗ �Q by the Legendre map L�L
:

� = dV �L = L∗
�L
(η �Q

) .

We recall that σ is the 1-form induced by � on the submanifold

T 1 �Q. When L is regular, L�L
restricted to T 1 �Q is a local

diffeomorphism of T 1 �Q on its image, which therefore is an

immersed submanifold (maybe with self intersections) of T ∗ �Q,
coisotropic since its codimension is 1. Therefore dσ is of rank

2n, and there exists on T 1 �Q a unique vector field XL contained
in ker dσ whose projection on T is equal to 1. Integral curves of
this vector field are motions of the mechanical system.
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Appendix B. The homogeneous Lagrangian (9)

Still when L is regular, the manifold of motions of the
mechanical system is the quotient of the presymplectic manifold

(T 1 �Q, dσ) by its characteristic foliation determined by ker dσ.
J. M. Souriau [7] has shown that it has indeed the structure of a
smooth symplectic manifold (maybe non-Hausdorff).
The Legendre map LL defined with the original Lagrangian L,

expressed in local coordinates (t, qi, q̇i) on T 1 �Q (submanifold of

T �Q on which ṫ = 1) is

LL : (t, qi, q̇i) �→

�

t, qi, pi =
∂L(t, qi, q̇i)

∂q̇i

�

.

It is defined on T 1 �Q, and takes its values in the quotient bundle

T ∗ �Q/(kerTθ)0. Its use is interesting when a trivialization of the

time-configuration manifold �Q into a product T ×Q of the time
axis and an n-dimensional configuration manifold Q is chosen.
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Appendix B. The homogeneous Lagrangian (10)

We now assume that �Q = T ×Q, where T is the time axis and

Q a configuration manifold. The map θ : �Q→ T is the first

projection. The codimension 1 submanifold T 1 �Q can be

identified with T × TQ, and the quotient manifold T ∗ �Q/(kerTθ)0

with T × T ∗Q. The Legendre map determined by the
Lagrangian L can therefore be considered as a map
LL : T × TQ→ T × T ∗Q,

LL : (t, qi, q̇i) �→

�

t, qi, pi =
∂L(t, q, q̇)

∂q̇i

�

, 1 ≤ i ≤ n,.

The cotangent bundle T ∗ �Q can be identified with T ∗T × T ∗Q,
and the Legendre map determined by the homogeneous

Lagrangian �L, restricted to T 1 �Q = T × TQ, is

L�L

�
�
T 1 �Q

: (t, qi, q̇i) �→

�

t, qi, pt = −E(t, qi, q̇i), pi =
∂L(t, q, q̇)

∂q̇i

�

.
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Appendix B. The homogeneous Lagrangian (11)

Therefore
L�L

�
�
T 1 �Q

= LL − E dt .

Regularity and hyperregularity of the Lagrangian L, defined
above in terms of properties of L�L

, may be seen also by

properties of LL : the Lagrangian L is regular if the Legendre
map LL is a local diffeomorphism and hyperregular if LL is a
global diffeomorphism.
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Appendix B. The homogeneous Lagrangian (12)

We still assume that �Q = T ×Q and, in addition, that the
Lagrangian L is hyperregular. We have seen that the motions of
the mechanical system are integral curves of a vector field XL,

defined on T 1 �Q = T × TQ, such that

i(XL)dσ = 0 , T θ(XL) = 1 ,

(the meaning of 1 in the right hand side is the constant vector
field of unit length on T ).

The image W = L�L
(T �Q) of the Legendre map L�L

is a

codimension-1 submanifold of T ∗ �Q, on which we can define the
vector field

YL = (L�L
)∗(XL) ,

direct image of the vector field XL by the diffeomorphism

L�L

�
�
T 1 �Q

: T 1 �Q → W .
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Appendix B. The homogeneous Lagrangian (13)

The vector field YL is determined by the conditions

i(YL)d(i
∗
Wη �Q

) = 0 , TπT (YL) = 1 ,

where i∗W η �Q
is the form induced on W by the Liouville 1-form of

T ∗ �Q, and πT :W → T the natural projection on the time axis T .

The Hamiltonian is the function

H = E ◦ L−1
L : T × T ∗Q → R .

The map

(t, qi, pi) �→ (t, qi, pt = H(t, qi, pi)) , 1 ≤ i ≤ n ,

allows us to identify T × T ∗Q with the submanifold W of T ∗ �Q.
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Appendix B. The homogeneous Lagrangian (14)

Using this identification of T × T ∗Q with W , the form induced on

W by the Liouville 1-form of T ∗ �Q becomes the form on T × T ∗Q

ηQ −H dt ,

where ηQ is the Liouville 1-form on T ∗Q

The vector field YL, now considered as defined on T × T ∗Q, is
therefore determined by

i(YL)(dηQ − dH ∧ dt) = 0 , TπT (YL) = 1 .

The second equality above allows us to write

YL = XH +
∂

∂t
,

where XH is a time-dependent vector field on T ∗Q.
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Appendix B. The homogeneous Lagrangian (15)

The first equality determining YL leads to

i(XH)dηQ = −(dH −
∂H

∂t
dt) , i(XH)dH = 0 .

The first equation shows that for each fixed time t, the value XHt

of the time-dependent vector field XH is the Hamiltonian vector
field on T ∗Q whose Hamiltonian is Ht : T

∗Q → R. The second
equation is automatically satisfied when the first equation is
satisfied.

This is the Hamiltonian formalism, equivalent to the Lagrangian
formalism when the Lagrangian L is hyperregular.
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