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Historical overview

The word “symplectic”
It seems that the word symplectic was used for the first time
with its modern mathematical meaning by Hermann Weyl
(1885–1955), in his book Classical groups [16]. It derives
from a Greek word meaning complex, used by Weyl
because the word complex, whose origin is Latin, was
already in use in Mathematics with a different meaning.
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Historical overview

The word “symplectic”
It seems that the word symplectic was used for the first time
with its modern mathematical meaning by Hermann Weyl
(1885–1955), in his book Classical groups [16]. It derives
from a Greek word meaning complex, used by Weyl
because the word complex, whose origin is Latin, was
already in use in Mathematics with a different meaning.

The concept of a symplectic structure
That concept appeared in Mathematics much earlier than
the word symplectic, in the works of Joseph Louis Lagrange
(1736–1813), first in his paper about the slow changes of
the orbital elements of planets in the solar system, then in a
following paper a little later, as a fundamental ingredient in
the mathematical formulation of any problem in Mechanics.
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Orbital elements of the planets (1)

First Kepler’s law As a first (and very good)
approximation, the orbit of each planet in the solar system
is an ellipse, with the Sun at one of its foci : it is the first law
discovered by Johannes Kepler (1571–1630)).
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approximation, the orbit of each planet in the solar system
is an ellipse, with the Sun at one of its foci : it is the first law
discovered by Johannes Kepler (1571–1630)).

Second Kepler’s law As a function of time, the
motion is such that the area swept by the line which joins
the planet to the Sun grows linearly with time.
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approximation, the orbit of each planet in the solar system
is an ellipse, with the Sun at one of its foci : it is the first law
discovered by Johannes Kepler (1571–1630)).

Second Kepler’s law As a function of time, the
motion is such that the area swept by the line which joins
the planet to the Sun grows linearly with time.

Third Kepler’s law The ratio of the squares of the
revolutionary periods for two planets in the solar system is
equal to the ratio of the cubes of their major axes.
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Orbital elements of the planets (1)

First Kepler’s law As a first (and very good)
approximation, the orbit of each planet in the solar system
is an ellipse, with the Sun at one of its foci : it is the first law
discovered by Johannes Kepler (1571–1630)).

Second Kepler’s law As a function of time, the
motion is such that the area swept by the line which joins
the planet to the Sun grows linearly with time.

Third Kepler’s law The ratio of the squares of the
revolutionary periods for two planets in the solar system is
equal to the ratio of the cubes of their major axes.

Under Kepler’s approximation, the knowledge of the orbital
elements of a planet completely determines its position in
space, for all times, past, present and future.
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Orbital elements of the planets (2)
Each planet in the solar system has 6 orbital elements :
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Orbital elements of the planets (2)
Each planet in the solar system has 6 orbital elements :

2 for the determination of the plane which contains its
orbit ; for example, once chosen a reference plane
containing the Sun and a reference direction in that plane,
— the angle between that reference direction and the
intersection of the orbit’s plane with the reference plane,
— and another angle, which measures the inclination of the
orbit’s plane with respect to the refference plane ;
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Orbital elements of the planets (2)
Each planet in the solar system has 6 orbital elements :

2 for the determination of the plane which contains its
orbit ; for example, once chosen a reference plane
containing the Sun and a reference direction in that plane,
— the angle between that reference direction and the
intersection of the orbit’s plane with the reference plane,
— and another angle, which measures the inclination of the
orbit’s plane with respect to the refference plane ;

2 for the size and the shape of the orbit, for example the
length of the major axis and the excentricity ;
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Orbital elements of the planets (2)
Each planet in the solar system has 6 orbital elements :

2 for the determination of the plane which contains its
orbit ; for example, once chosen a reference plane
containing the Sun and a reference direction in that plane,
— the angle between that reference direction and the
intersection of the orbit’s plane with the reference plane,
— and another angle, which measures the inclination of the
orbit’s plane with respect to the refference plane ;

2 for the size and the shape of the orbit, for example the
length of the major axis and the excentricity ;

one to determine the position of the orbit in its plane, for
exampe the angle between the major axis and the
interesection line of the orbit’s plane with the reference
plane ;
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Orbital elements of the planets (2)
Each planet in the solar system has 6 orbital elements :

2 for the determination of the plane which contains its
orbit ; for example, once chosen a reference plane
containing the Sun and a reference direction in that plane,
— the angle between that reference direction and the
intersection of the orbit’s plane with the reference plane,
— and another angle, which measures the inclination of the
orbit’s plane with respect to the refference plane ;

2 for the size and the shape of the orbit, for example the
length of the major axis and the excentricity ;

one to determine the position of the orbit in its plane, for
exampe the angle between the major axis and the
interesection line of the orbit’s plane with the reference
plane ;

a last one to determine the position of the planet on its
orbit : its position at a particular time chosen for oirigin.
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Orbital elements of the planets (3)
Since for a given planet, there are 6 orbital elements, the
set of all possible motions of that planet around the Sun is a
smooth manifold of dimension 6.
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Orbital elements of the planets (3)
Since for a given planet, there are 6 orbital elements, the
set of all possible motions of that planet around the Sun is a
smooth manifold of dimension 6.

Another way to guess the dimension of that manifold : the
planet’s motion is completely determined when one knows
the three coordinates of its position and the three
components of its velocity at a given time, for example the
time chosen for origin, in any given reference frame.
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Orbital elements of the planets (3)
Since for a given planet, there are 6 orbital elements, the
set of all possible motions of that planet around the Sun is a
smooth manifold of dimension 6.

Another way to guess the dimension of that manifold : the
planet’s motion is completely determined when one knows
the three coordinates of its position and the three
components of its velocity at a given time, for example the
time chosen for origin, in any given reference frame.

J.-M. Souriau [14] has rigorously proven that the set of all
possible motions of a given planet in the solar system,
under Kepler’s approximation, is indeed a smooth manifold
of dimension 6 : the manifold of motions of the planet.
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Orbital elements of the planets (4)
We consider only elliptical motions, (not hyperbolic or
parabolic motions which would be those of comets rather
than those of planets), and we do not consider singular
motions of the panet along straight line with a collision
between the planet and the Sun.
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Orbital elements of the planets (4)
We consider only elliptical motions, (not hyperbolic or
parabolic motions which would be those of comets rather
than those of planets), and we do not consider singular
motions of the panet along straight line with a collision
between the planet and the Sun.

By a method called regularization of collisions, we may
avoid to exclude singular motions with collisions ; there is
still a smooth manifold of motions, but it becomes non
Hausdorff.
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Beyond Kepler’s approximation

Kepler’s approximation is valid only under the assumptions
that each planet interacts gravitationally only with the Sun,
and has a mass negligible compared to that of the Sun.
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Beyond Kepler’s approximation

Kepler’s approximation is valid only under the assumptions
that each planet interacts gravitationally only with the Sun,
and has a mass negligible compared to that of the Sun.

But in fact, even if we do not take into account the
gravitational interaction between planets, the orbit of each
planet would be an ellipse whose focus is the center of
mass of the system planet-Sun, not the center of the Sun.
That center of mass is different for each planet. Therefore
the planets have two kinds of gravitational interactions
between them : their direct mutual interactions, and the
interaction that each of them exerts on all the others
through its interaction with the Sun.
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Beyond Kepler’s approximation

Kepler’s approximation is valid only under the assumptions
that each planet interacts gravitationally only with the Sun,
and has a mass negligible compared to that of the Sun.

But in fact, even if we do not take into account the
gravitational interaction between planets, the orbit of each
planet would be an ellipse whose focus is the center of
mass of the system planet-Sun, not the center of the Sun.
That center of mass is different for each planet. Therefore
the planets have two kinds of gravitational interactions
between them : their direct mutual interactions, and the
interaction that each of them exerts on all the others
through its interaction with the Sun.

It is to deal with that problem that Lagrange created the
method of variation of the constants.
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Laplace, Lagrange and Poisson : chronology
1773 : Laplace proves that there is no first order secular
variation of the major axis of the elliptical orbits of the
planets.

1776, 1781, 1782, . . . : Lagrange improves Laplace’s result
and considers the slow variations of other orbital elements.

20 June 1808 : Poisson introduces a new method in Sur les
inégalités séculaires des moyens mouvements des
planètes.

22 August 1808 : Lagrange considers again the same
problem in Mémoire sur la théorie des variations des
éléments des planètes.

13 March 1809 : Lagrange extends his method in Mémoire
sur la théorie générale de la variation des constantes
arbitraires dans tous les problèmes de mécanique.
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Lagrange, Poisson and others : chronology (2)
16 October 1809 : Poisson introduces the Poisson bracket
in Sur la variation des constantes arbitraires dans les
questions de mécanique.

19 February 1810 : Lagrange presents his Second mémoire
sur la théorie de la variation des constantes arbitraires dans
les problèmes de mécanique. He recognizes Poisson’s
contribution, but claims that the main ideas already were in
his previous paper.

15 January 1835 : Hamilton introduces what we call today
Hamilton’s formalism in his Second essay on a general
method in Dynamics.

1837 (or maybe 1831 ?) : Cauchy gives a very clear
presentation of Lagrange’s method, using Hamilton’s
formalism, in his Note sur la variation des constantes
arbitraires dans les problèmes de mécanique.
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The method of varying constants

Lagrange had already used the idea of varying integration
constants in his work on ordinary linear nonhomogeneous
differential equations [7].
He used a similar idea to describe the planets as moving
around the Sun on ellipses with slowly varying in time
(instead of rigorously constant) orbital elements.
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The method of varying constants

Lagrange had already used the idea of varying integration
constants in his work on ordinary linear nonhomogeneous
differential equations [7].
He used a similar idea to describe the planets as moving
around the Sun on ellipses with slowly varying in time
(instead of rigorously constant) orbital elements.

His work aimed at the determination of the differential
equations which govern these slow variations [8].
He soon understood that his method could be used not only
for the description of the planet’s motion, but for solving
very general problems in Mechanics.
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The method of varying constants

Lagrange had already used the idea of varying integration
constants in his work on ordinary linear nonhomogeneous
differential equations [7].
He used a similar idea to describe the planets as moving
around the Sun on ellipses with slowly varying in time
(instead of rigorously constant) orbital elements.

His work aimed at the determination of the differential
equations which govern these slow variations [8].
He soon understood that his method could be used not only
for the description of the planet’s motion, but for solving
very general problems in Mechanics.

He called his method Méthode de variation des constantes
and presented it at the French Academy of Sciences on the
13rd of March 1809 [9].
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Lagrange’s paper of 1809 (1)

Lagrange considers a mechanical system with kinetic
energy

T = T (r, s, u, . . . , r′, s′, u′ . . .) ,

where r, s, u, . . . are independent real variables which
describe the system’s position in space. For a planet
moving around the Sun, these variables are the three
coordinates or the planet (in some reference frame). Let n

be the number of these variables. In modern words, n is the
dimension of the configuration manifold.
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Lagrange’s paper of 1809 (1)

Lagrange considers a mechanical system with kinetic
energy

T = T (r, s, u, . . . , r′, s′, u′ . . .) ,

where r, s, u, . . . are independent real variables which
describe the system’s position in space. For a planet
moving around the Sun, these variables are the three
coordinates or the planet (in some reference frame). Let n

be the number of these variables. In modern words, n is the
dimension of the configuration manifold.

Quantities r′, s′, u′, . . ., are the derivatives of r, s, u, . . ., with
respect to time t :

r′ =
dr

dt
, s′ =

ds

dt
, u′ =

du

dt
, , . . .
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Lagrange’s paper of 1809 (2)
As a first approximation, Lagrange assumes that the forces
which act on t he system come from a potential V , which
depends on r, s, u, . . ., but not of the tume derivatives r′, s′,
u′, . . . For a planet’s motion, V is the gravitational potential
due to the Sun’s attraction. The equations which govern the
motion (established by Lagrange in his book [11]) are

d

dt

(
∂T

∂r′

)
−

∂T

∂r
+

∂V

∂r
= 0 ,

and similar equations in which r and r′ are replaced by s

and s′, u and u′, . . .
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Lagrange’s paper of 1809 (2)
As a first approximation, Lagrange assumes that the forces
which act on t he system come from a potential V , which
depends on r, s, u, . . ., but not of the tume derivatives r′, s′,
u′, . . . For a planet’s motion, V is the gravitational potential
due to the Sun’s attraction. The equations which govern the
motion (established by Lagrange in his book [11]) are

d

dt

(
∂T

∂r′

)
−

∂T

∂r
+

∂V

∂r
= 0 ,

and similar equations in which r and r′ are replaced by s

and s′, u and u′, . . .

The general solution of this system of n second-order
equations depends on the time t and on 2n integration
constants. Lagrange denotes them a, b, c, f , g, h, . . .

Poisson 2008. Lausanne, July 2008 The inception of symplectic geometry: the works of Lagrange and Poisson during the years 1808–1810 – p. 14/51



Lagrange’s paper of 1809 (3)
That general solution may be written as

r = r(t, a, b, c, f, g, h, . . .), s = s(t, a, b, c, f, g, h, . . .), u = . . . .

For a planet’s motion, the 2n integration constants a, b, c, f ,
g, h, . . . are the orbital elements of the planet.
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Lagrange’s paper of 1809 (4)
As a better approximation, Lagrange assumes that the
potential V does not fully describe the forces which act on
the system, and should be replaced by V − Ω, where Ω may
depend on r, s, u, . . ., and on the time t. For a planet’s
motion, Ω describes the gravitational interactions between
the planet under consideration and all the other planets,
which were considered as negligible in the first
approximation. Ω depends on time, because the planets
which are the source of these gravitational interaction are
moving. The equations become

d

dt

(
∂T

∂r′

)
−

∂T

∂r
+

∂V

∂r
=

∂Ω

∂r
,

and similar equations in which r and r′ are replaced by s

and s′, u and u′, . . .
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Lagrange’s paper of 1809 (5)
Lagrange writes the solution of this new system under the
form

r = r
(
t, a(t), b(t), c(t), f(t), g(t), h(t), . . .

)
,

and similar expressions for s, u, . . .. The function

(t, a, b, c, f, g, h, . . .) 7→ r(t, a, b, c, f, g, h . . .)

which appears in this expression, and the similar fuctions
which appear in the expressions of s, u, . . . are, of course,
those previously found when solving the problem in its first
approximation, with Ω replaced by 0. These functions are
therefore considered as known.
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Lagrange’s paper of 1809 (5)
Lagrange writes the solution of this new system under the
form

r = r
(
t, a(t), b(t), c(t), f(t), g(t), h(t), . . .

)
,

and similar expressions for s, u, . . .. The function

(t, a, b, c, f, g, h, . . .) 7→ r(t, a, b, c, f, g, h . . .)

which appears in this expression, and the similar fuctions
which appear in the expressions of s, u, . . . are, of course,
those previously found when solving the problem in its first
approximation, with Ω replaced by 0. These functions are
therefore considered as known.

It only remains to find the 2n functions of time t 7→ a(t),
t 7→ b(t), . . .. Of course, these functions will depend on time
and on 2n arbitrary integration constants.
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Lagrange’s parentheses (1)

Lagrange obtains the differential equations which govern
the time variations of these functions a(t), b(t), . . .. The
calculations by which he obtains these equations are at first
very complicated, and he makes two successive
improvements, first in an Addition, then in a Supplément to
his initial paper. He finds a remarkable property : these
equations become very simple when they are expressed in
terms of quantities that he denotes by (a, b), (a, c), (a, f),
(b, c), (b, f), . . .. Today, these quantities are still in use and
called Lagrange’s parentheses.
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Lagrange’s parentheses (1)

Lagrange obtains the differential equations which govern
the time variations of these functions a(t), b(t), . . .. The
calculations by which he obtains these equations are at first
very complicated, and he makes two successive
improvements, first in an Addition, then in a Supplément to
his initial paper. He finds a remarkable property : these
equations become very simple when they are expressed in
terms of quantities that he denotes by (a, b), (a, c), (a, f),
(b, c), (b, f), . . .. Today, these quantities are still in use and
called Lagrange’s parentheses.

Lagrange’s parentheses are functions of a, b, c, f , g, h, . . ..
They do not depend on time, nor on the additional forces
which act on the system when Ω is taken into account.
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Lagrange’s parentheses (2)
J.-M. Souriau [15, 5] has shown that Lagrange’s
parentheses are the components of the canonical
symplectic 2-form on the manifold of motions of the
mechanical system, in the chart of that manifold whose
local coordinates are a, b, c, f , g, h, . . .. So Lagrange
discovered the notion of a symplectic structure more than
100 years before that notion was so named by H. Weyl [16].
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Lagrange’s parentheses (2)
J.-M. Souriau [15, 5] has shown that Lagrange’s
parentheses are the components of the canonical
symplectic 2-form on the manifold of motions of the
mechanical system, in the chart of that manifold whose
local coordinates are a, b, c, f , g, h, . . .. So Lagrange
discovered the notion of a symplectic structure more than
100 years before that notion was so named by H. Weyl [16].

We insist on the fact that Lagrange’s parentheses are
relative to the mechanical system with kinetic energy T and
applied forces described by the potential V . The additional
forces described by Ω play no part in Lagrange’s
parentheses : the consideration of these additional forces
allowed the discovery of a structure in which they take no
part !
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Lagrange’s parentheses (3)
At first, Lagrange obtained for the parentheses (a, b), (a, c),
(b, c), . . . very complicated expressions. In the Addition to
his paper (Section 26 of [9]), he obtains the much simpler
texpressions which today are still in use :

(a, b) =
∂r

∂a

∂pr

∂b
−

∂r

∂b

∂pr

∂a
+

∂s

∂a

∂ps

∂b
−

∂s

∂b

∂ps

∂a
+

∂u

∂a

∂pu

∂b
−

∂u

∂b

∂pu

∂a
+· · · ,

and similar expressions for (a, c), (b, c), . . .
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Lagrange’s parentheses (3)
At first, Lagrange obtained for the parentheses (a, b), (a, c),
(b, c), . . . very complicated expressions. In the Addition to
his paper (Section 26 of [9]), he obtains the much simpler
texpressions which today are still in use :

(a, b) =
∂r

∂a

∂pr

∂b
−

∂r

∂b

∂pr

∂a
+

∂s

∂a

∂ps

∂b
−

∂s

∂b

∂ps

∂a
+

∂u

∂a

∂pu

∂b
−

∂u

∂b

∂pu

∂a
+· · · ,

and similar expressions for (a, c), (b, c), . . . We have set, as
Hamilton [2,3] and Cauchy wil do 30 years later

pr =
∂T

∂r′
, ps =

∂T

∂s′
, pu =

∂T

∂u′
.

Lagrange used the less convenient notations T ′, T ′′ and T ′′′

instead of pr, ps and pu.
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Lagrange’s parentheses (4)
We recall that r, s, u, . . . are local coordinates on the
configuration manifold of the system, and r′, s′, u′ their
partial derivatives with respecto to time. The kinetic energy
T , which depends on r, s, u, . . ., r′, s′, u′, . . ., is a function
defined on the tangent bundle to the configuration manifold,
which is called the manifold of kinematic states of the
system.
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Lagrange’s parentheses (4)
We recall that r, s, u, . . . are local coordinates on the
configuration manifold of the system, and r′, s′, u′ their
partial derivatives with respecto to time. The kinetic energy
T , which depends on r, s, u, . . ., r′, s′, u′, . . ., is a function
defined on the tangent bundle to the configuration manifold,
which is called the manifold of kinematic states of the
system. The map

(r, s, u, . . . , r′, s′, u′, . . .) 7→ (r, s, u, . . . , pr, ps, pu, . . .),

called the Legendre transformation, is defined on the
tangent bundle to the configuration manifold, and takes its
values in the cotangent budle to that manifold, called the
phase space of the system.
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Lagrange’s parentheses (4)
We recall that r, s, u, . . . are local coordinates on the
configuration manifold of the system, and r′, s′, u′ their
partial derivatives with respecto to time. The kinetic energy
T , which depends on r, s, u, . . ., r′, s′, u′, . . ., is a function
defined on the tangent bundle to the configuration manifold,
which is called the manifold of kinematic states of the
system. The map

(r, s, u, . . . , r′, s′, u′, . . .) 7→ (r, s, u, . . . , pr, ps, pu, . . .),

called the Legendre transformation, is defined on the
tangent bundle to the configuration manifold, and takes its
values in the cotangent budle to that manifold, called the
phase space of the system. When the kinetic energy is a
positive definite quadratic form, that map is a
diffeomorphism. This occurs very often, for example in the
mechanical system considered by Lagrange, of the motion
of a planet around the Sun.
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Lagrange’s parentheses (5)
Since the integration constants a, b, c, f , g, h, . . . make a
system of local coordinates on the manifold of motions, they
completely determine the motion of the system. We insist
again that it is the system in his first approximation, with Ω
replaced by 0. Therefore, for each time t, the instantaneous
values of the quantities r, s, u, . . ., r′, s′, u′, . . ., are
determined as soon as a, b, c, f , g, h, . . . are given
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Lagrange’s parentheses (5)
Since the integration constants a, b, c, f , g, h, . . . make a
system of local coordinates on the manifold of motions, they
completely determine the motion of the system. We insist
again that it is the system in his first approximation, with Ω
replaced by 0. Therefore, for each time t, the instantaneous
values of the quantities r, s, u, . . ., r′, s′, u′, . . ., are
determined as soon as a, b, c, f , g, h, . . . are given

Conversely, the existence and uniqueness theorem for
solutions of ordinary differential equations (implicitly
considered as an evidence by Lagrange, at least for
Kepler’s problem whose solutions are explicitly known)
shows that when the values of r, s, u, . . ., r′, s′, u′, . . . at any
given time t are known, then the motion is determined, so a,
b, c, f , g, h, . . . are known.
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Lagrange’s parentheses (6)
In short, for each time t, the map which associates to a
motion of coordinates (a, b, c, f, g, h, . . .) the values at
time t of (r, s, u, . . . , r′, s′, u′, . . .) is a diffeomorphism from
the manifold of motions onto the manifold of kinematic
states of the system.
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Lagrange’s parentheses (6)
In short, for each time t, the map which associates to a
motion of coordinates (a, b, c, f, g, h, . . .) the values at
time t of (r, s, u, . . . , r′, s′, u′, . . .) is a diffeomorphism from
the manifold of motions onto the manifold of kinematic
states of the system.

We compose that diffeomorphism with Legendre’s
transformation and we get, for each time t, a
diffeomorphism from the manifold of motions onto the
phase space

(a, b, c, f, g, h, . . .) 7→
(
r(t), s(t), u(t), . . . , pr(t), ps(t), pu(t), . . .

)

(where r(t), s(t), u(t), pr(t), ps(t), pu(t) are the values taken
at time t by the corresponding quantities).
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Lagrange’s parentheses (7)
The partial derivatives which appear in the expression of
Lagrange’s parentheses

(a, b) =
∂r

∂a

∂pr

∂b
−

∂r

∂b

∂pr

∂a
+

∂s

∂a

∂ps

∂b
−

∂s

∂b

∂ps

∂a
+

∂u

∂a

∂pu

∂b
−

∂u

∂b

∂pu

∂a
+· · · .

are the partial derivatives of the diffeomorphism

(a, b, c, f, g, h, . . .) 7→ (r(t), s(t), u(t), . . . , pr(t), ps(t), pu(t), . . .)

where t is any value of the time, considered as fixed.
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Lagrange’s parentheses (7)
The partial derivatives which appear in the expression of
Lagrange’s parentheses

(a, b) =
∂r

∂a

∂pr

∂b
−

∂r

∂b

∂pr

∂a
+

∂s

∂a

∂ps

∂b
−

∂s

∂b

∂ps

∂a
+

∂u

∂a

∂pu

∂b
−

∂u

∂b

∂pu

∂a
+· · · .

are the partial derivatives of the diffeomorphism

(a, b, c, f, g, h, . . .) 7→ (r(t), s(t), u(t), . . . , pr(t), ps(t), pu(t), . . .)

where t is any value of the time, considered as fixed.

Important remark Lagrange’s parenthesis (a, b) has a
meaning when a complete system of local coordinates
(a, b, c, f, g, h, . . .) has been chosen on the manifold of
motion : (a, b) depends not only of the functions a and b on
that manifold : it also depends on all the other coordinates
functions c, f , g, h, . . .
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Lagrange’s parentheses (8)
Let us consider again the diffeomorphism

(a, b, c, f, g, h, . . .) 7→ (r(t), s(t), u(t), . . . , pr(t), ps(t), pu(t), . . .)

where t is any value of the time, considered as fixed.
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Lagrange’s parentheses (8)
Let us consider again the diffeomorphism

(a, b, c, f, g, h, . . .) 7→ (r(t), s(t), u(t), . . . , pr(t), ps(t), pu(t), . . .)

where t is any value of the time, considered as fixed.

Calculus of exterior differential forms, created by Élie
Cartan at the beginning of the XX-th century, did not exist in
Lagrange’s times. Today, with this very efficient tool, it is
very easy to check that Lagrange’s parentheses are the
components of the pull-back by that diffeomorphism, on the
manifold of motions, of the canonical symplectic 2 form of
the cotangent bundle to the configuration manifold.
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Lagrange’s parentheses (9)
(a, b) da ∧ db + (a, c) da ∧ dc + · · · + (b, c) db ∧ dc + · · ·

=

(
∂r

∂a
da +

∂r

∂b
db + · · ·

)
∧

(
∂pr

∂a
da +

∂pr

∂b
db + · · ·

)

+

(
∂s

∂a
da +

∂s

∂b
db + · · ·

)
∧

(
∂ps

∂a
da +

∂ps

∂b
db + · · ·

)
+ . . .

= dr ∧ dpr + ds ∧ dps + du ∧ dpu + · · · .

Poisson 2008. Lausanne, July 2008 The inception of symplectic geometry: the works of Lagrange and Poisson during the years 1808–1810 – p. 26/51



Lagrange’s parentheses (9)
(a, b) da ∧ db + (a, c) da ∧ dc + · · · + (b, c) db ∧ dc + · · ·

=

(
∂r

∂a
da +

∂r

∂b
db + · · ·

)
∧

(
∂pr

∂a
da +

∂pr

∂b
db + · · ·

)

+

(
∂s

∂a
da +

∂s

∂b
db + · · ·

)
∧

(
∂ps

∂a
da +

∂ps

∂b
db + · · ·

)
+ . . .

= dr ∧ dpr + ds ∧ dps + du ∧ dpu + · · · .

That expresses a symplectic 2-form in Darboux coordinates.

Poisson 2008. Lausanne, July 2008 The inception of symplectic geometry: the works of Lagrange and Poisson during the years 1808–1810 – p. 26/51



Lagrange’s parentheses (9)
(a, b) da ∧ db + (a, c) da ∧ dc + · · · + (b, c) db ∧ dc + · · ·

=

(
∂r

∂a
da +

∂r

∂b
db + · · ·

)
∧

(
∂pr

∂a
da +

∂pr

∂b
db + · · ·

)

+

(
∂s

∂a
da +

∂s

∂b
db + · · ·

)
∧

(
∂ps

∂a
da +

∂ps

∂b
db + · · ·

)
+ . . .

= dr ∧ dpr + ds ∧ dps + du ∧ dpu + · · · .

That expresses a symplectic 2-form in Darboux coordinates.
Lagrange has proven that although defined by means of a
diffeomorphism which depends on time, his parentheses do
not depend directly on time : they are functions on the
manifold of motions. By proving that result, Lagrange has
proven that the canonical symplectic 2-form on phase
space is invariant under the flow of the evolution vector field
on that space.
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Formulae for the variation of constants

Lagrange proves that the derivatives with respect to time t

of the “constants that are varied” a, b, . . ., satisfy

2n∑

j=1

(ai, aj)
daj

dt
=

∂Ω

∂ai

, 1 ≤ i ≤ 2n ,

where, for short, I have written ai, 1 ≤ i ≤ 2n instead of a, b,
c, . . ., and where I have taken into account the
skew-symmetry (aj , ai) = −(ai, aj).
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Formulae for the variation of constants

Lagrange proves that the derivatives with respect to time t

of the “constants that are varied” a, b, . . ., satisfy

2n∑

j=1

(ai, aj)
daj

dt
=

∂Ω

∂ai

, 1 ≤ i ≤ 2n ,

where, for short, I have written ai, 1 ≤ i ≤ 2n instead of a, b,
c, . . ., and where I have taken into account the
skew-symmetry (aj , ai) = −(ai, aj).
Lagrange indicates that by solving that linear system, one
obtains something like

dai

dt
=

2n∑

j=1

Li j
∂Ω

∂aj

, 1 ≤ i ≤ 2n .
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Formulae for the variation of constants (2)
Lagrange explains that the Li j are functions of the ai which
do not depend explicitly on time.
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Formulae for the variation of constants (2)
Lagrange explains that the Li j are functions of the ai which
do not depend explicitly on time.

In modern words, the Li j are functions defined on the
manifold of motions.
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Formulae for the variation of constants (2)
Lagrange explains that the Li j are functions of the ai which
do not depend explicitly on time.

In modern words, the Li j are functions defined on the
manifold of motions.

But Lagrange does not state their explicit expression.
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Formulae for the variation of constants (2)
Lagrange explains that the Li j are functions of the ai which
do not depend explicitly on time.

In modern words, the Li j are functions defined on the
manifold of motions.

But Lagrange does not state their explicit expression.

That will be done by Siméon Denis Poisson (1781–1840) a
few months later.
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Poisson’s paper of 1809

When he was a student at École Polytechnique, Siméon
Denis Poisson (1781–1840) attended lectures by Lagrange.
In a paper read at the French Academy of Sciences on the
16th of October 1809 [13], he adds a relatively important
ingredient to Lagrange’s method of varying constants. He
introduces new quantities, defined on the manifold of
motions, which he denotes by (a, b), (a, c), . . . These
quantities are not Lagrange’s parentheses. Today, they are
called Poisson brackets. In his paper, Poisson uses also
Lagrange’s parentheses but he denotes them differently, by
[a, b] instead of (a, b), [a, c] instead of (a, c), . . ..
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Poisson’s paper of 1809

When he was a student at École Polytechnique, Siméon
Denis Poisson (1781–1840) attended lectures by Lagrange.
In a paper read at the French Academy of Sciences on the
16th of October 1809 [13], he adds a relatively important
ingredient to Lagrange’s method of varying constants. He
introduces new quantities, defined on the manifold of
motions, which he denotes by (a, b), (a, c), . . . These
quantities are not Lagrange’s parentheses. Today, they are
called Poisson brackets. In his paper, Poisson uses also
Lagrange’s parentheses but he denotes them differently, by
[a, b] instead of (a, b), [a, c] instead of (a, c), . . ..
We will keep Lagrange’s notations (a, b), (a, c), . . . for
Lagrange’s parentheses and we will use {a, b}, {a, c}, . . . for
Poisson brackets.
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Poisson brackets (1)
The expression of Poisson brackets is

{a, b} =
∂a

∂pr

∂b

∂r
−

∂a

∂r

∂b

∂pr

+
∂a

∂ps

∂b

∂s
−

∂a

∂s

∂b

∂ps

+
∂a

∂pu

∂b

∂u
−

∂a

∂u

∂b

∂pu

+· · · .
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Poisson brackets (1)
The expression of Poisson brackets is

{a, b} =
∂a

∂pr

∂b

∂r
−

∂a

∂r

∂b

∂pr

+
∂a

∂ps

∂b

∂s
−

∂a

∂s

∂b

∂ps

+
∂a

∂pu

∂b

∂u
−

∂a

∂u

∂b

∂pu

+· · · .

Of course {a, c}, {b, c}, . . . are given by similar formulae.
We observe that in these formulae appear the partial
derivatives of the local coordinates a, b, c, . . . on the
manifold of motions, considered as functions of the
dynamical state of the system at time t, considered as fixed.
The independent variables which describe that dynamical
states are the values ; at time t, of the quantities r, pr, s, ps,
u, pu, . . ..
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Poisson brackets (1)
The expression of Poisson brackets is

{a, b} =
∂a

∂pr

∂b

∂r
−

∂a

∂r

∂b

∂pr

+
∂a

∂ps

∂b

∂s
−

∂a

∂s

∂b

∂ps

+
∂a

∂pu

∂b

∂u
−

∂a

∂u

∂b

∂pu

+· · · .

Of course {a, c}, {b, c}, . . . are given by similar formulae.
We observe that in these formulae appear the partial
derivatives of the local coordinates a, b, c, . . . on the
manifold of motions, considered as functions of the
dynamical state of the system at time t, considered as fixed.
The independent variables which describe that dynamical
states are the values ; at time t, of the quantities r, pr, s, ps,
u, pu, . . ..

The above formula is the well known expression of the
Poisson bracket of two functions a and b defined on a
symplectic manifold, in Darboux coordinates.
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Poisson brackets vs. Lagrange’s parentheses

Comparison of Poisson brackets with
Lagrange’s parentheses

{a, b} =
∂a

∂pr

∂b

∂r
−

∂a

∂r

∂b

∂pr

+
∂a

∂ps

∂b

∂s
−

∂a

∂s

∂b

∂ps

+
∂a

∂pu

∂b

∂u
−

∂a

∂u

∂b

∂pu

+· · · .

(a, b) =
∂r

∂a

∂pr

∂b
−

∂r

∂b

∂pr

∂a
+

∂s

∂a

∂ps

∂b
−

∂s

∂b

∂ps

∂a
+

∂u

∂a

∂pu

∂b
−

∂u

∂b

∂pu

∂a
+· · · .
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Poisson brackets vs. Lagrange’s parentheses

Comparison of Poisson brackets with
Lagrange’s parentheses

{a, b} =
∂a

∂pr

∂b

∂r
−

∂a

∂r

∂b

∂pr

+
∂a

∂ps

∂b

∂s
−

∂a

∂s

∂b

∂ps

+
∂a

∂pu

∂b

∂u
−

∂a

∂u

∂b

∂pu

+· · · .

(a, b) =
∂r

∂a

∂pr

∂b
−

∂r

∂b

∂pr

∂a
+

∂s

∂a

∂ps

∂b
−

∂s

∂b

∂ps

∂a
+

∂u

∂a

∂pu

∂b
−

∂u

∂b

∂pu

∂a
+· · · .

We see that these formulae involve the partial derivatives
of two diffeomorphisms, each one being the inverse of the
other one : the Poisson bracket involves the partial
derivatives of coordinates a, b, . . . on the manifold of
motions with respect to coordinates r, s, r′, s′, . . . on the
pjhase space, while Lagrange’s parentheses involve the
partial derivatives of r, s, r′, s′, . . . with respect to a, b, . . .
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Poisson brackets vs. Lagrange’s parentheses (2)
As a conclusion :

Lagrange’s parentheses (a, b), (a, c), . . ., are the
components of the symplectic 2-form on the manifold of
motions, in the chart of that manifold whose local
coordinates are a, b, c, . . .
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Poisson brackets vs. Lagrange’s parentheses (2)
As a conclusion :

Lagrange’s parentheses (a, b), (a, c), . . ., are the
components of the symplectic 2-form on the manifold of
motions, in the chart of that manifold whose local
coordinates are a, b, c, . . .

Poisson brackets {a, b}, {a, c}, . . ., are the components
of the associated Poisson bivector Λ, in the same chart.
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Poisson brackets vs. Lagrange’s parentheses (2)
As a conclusion :

Lagrange’s parentheses (a, b), (a, c), . . ., are the
components of the symplectic 2-form on the manifold of
motions, in the chart of that manifold whose local
coordinates are a, b, c, . . .

Poisson brackets {a, b}, {a, c}, . . ., are the components
of the associated Poisson bivector Λ, in the same chart.

The matrix whose components are the Lagrange’s
parentheses (a, b), (a, c), . . ., and the matrix whose
components are the Poisson brackets {a, b}, {a, c}, . . ., are
inverse of each other. That property was clearly stated by
Augustin Louis Cauchy (1789–1857) in a paper read at the
Academy of Torino on 11th October 1831, 22 years later
than Lagrange’s and Poisson papers.
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Poisson theorem
Important remark The Poisson bracket can be
defined for any pair of smooth functions on the manifold of
motions, and depends only on these two functions.
Lagrange’s parenthesis of two smooth functions has no
meaning : Lagrange’s parentheses can be defined only for
coordinates functions : in other words, Lagrange’s
parenthesis (a, b) does not depend only on a and b : it
depends on all the coordinate functions a, b, c, . . .
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Poisson theorem
Important remark The Poisson bracket can be
defined for any pair of smooth functions on the manifold of
motions, and depends only on these two functions.
Lagrange’s parenthesis of two smooth functions has no
meaning : Lagrange’s parentheses can be defined only for
coordinates functions : in other words, Lagrange’s
parenthesis (a, b) does not depend only on a and b : it
depends on all the coordinate functions a, b, c, . . .

Poisson theorem It states that the Poisson bracket of
two first integrals is a first integral, that means a function
which remains constant on each trajectory of the system.
Today, that result is presented as a consequence of Jacobi
identity. That identity was not known by Lagrange, nor by
Poisson, who considered the constancy of the Poisson
bracket of two first integrals as due to the fact that it is a
function defined on the manifold of motions.
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Jacobi identity

Lagrange et Poisson noted the skew-symmetry of their
parentheses and brackets, but said nothing about Jacobi
identity for the Poisson bracket, nor about the relations
between Lagrange’s parentheses expressing that they are
the components of a closed 2-form.
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Jacobi identity

Lagrange et Poisson noted the skew-symmetry of their
parentheses and brackets, but said nothing about Jacobi
identity for the Poisson bracket, nor about the relations
between Lagrange’s parentheses expressing that they are
the components of a closed 2-form.

Carl Gustav Jacob Jacobi (1804–1851) [6, 4] discovered
that identity, understood its importance and proved that it is
satisfied by Poisson’s bracket as well as by the bracket of
vector fields. That identity played an important part in the
theory of Lie groups and Lie algebras developed by Sophus
Lie.

{
f, {g, h}

}
+

{
g, {h, f}

}
+

{
h, {f, g}

}
= 0 for functions ,

[
X, [Y, Z]

]
+

[
Y, [Z,X]

]
+

[
Z, [X,Y ]

]
= 0 for vector fields .
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Lagrange’s paper of 1810

In this paper, Lagrange expresses more simply his previous
results by using Poisson brackets. He writes the differential
equations which govern the time variations of “constants” a,
b, . . ., under the form

dai

dt
=

2n∑

j=1

{ai, aj}
∂Ω

∂aj
, 1 ≤ i ≤ 2n .
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Lagrange’s paper of 1810

In this paper, Lagrange expresses more simply his previous
results by using Poisson brackets. He writes the differential
equations which govern the time variations of “constants” a,
b, . . ., under the form

dai

dt
=

2n∑

j=1

{ai, aj}
∂Ω

∂aj
, 1 ≤ i ≤ 2n .

I have denoted the constants by ai, 1 ≤ i ≤ 2n, which

allows a more concise expression using the symbol
2n∑

i=1

.

Lagrange used longer expressions in which the constants
were denoted by a, b, c, f , g, h, . . .
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Lagrange’s paper of 1810 (2)
Let us observe that Lagrange could have written his
equations under a simpler form

dai

dt
= {ai,Ω} , 1 ≤ i ≤ 2n ,

since Ω can be considered as a function defined on the
product of the manifold of motions with the factor R, for the
time. Therefore the Poisson bracket {ai,Ω} can be
unambiguously defined :

{ai,Ω} =
2n∑

j=1

{ai, aj}
∂Ω

∂aj

.
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Lagrange’s paper of 1810 (2)
Let us observe that Lagrange could have written his
equations under a simpler form

dai

dt
= {ai,Ω} , 1 ≤ i ≤ 2n ,

since Ω can be considered as a function defined on the
product of the manifold of motions with the factor R, for the
time. Therefore the Poisson bracket {ai,Ω} can be
unambiguously defined :

{ai,Ω} =
2n∑

j=1

{ai, aj}
∂Ω

∂aj

.

Lagrange did not use that simpler expression. Nor did
Poisson in his paper of 1809. Lagrange and Poisson used
the Poisson bracket only for coordinate functions ai, not for
more general functiuns such as Ω.
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Cauchy’s paper of 1837
This short paper (6 pages), published in the Journal de
Mathématiques pures et appliquées, is extracted from a
longer paper presented by Augustin-Louis Cauchy
(1789-1857) at the Academy of Torino, on the 11th october
1831. Its title is almost the same as those of the papers by
Lagrange and Poisson.
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Cauchy’s paper of 1837
This short paper (6 pages), published in the Journal de
Mathématiques pures et appliquées, is extracted from a
longer paper presented by Augustin-Louis Cauchy
(1789-1857) at the Academy of Torino, on the 11th october
1831. Its title is almost the same as those of the papers by
Lagrange and Poisson.

Cauchy resolutely uses the Hamiltonian formalism. He
explains very clearly the main results due to Lagrange and
Poisson. However, he does not write Poisson brackets with
the function Ω (which is denoted by R in his paper).

Poisson 2008. Lausanne, July 2008 The inception of symplectic geometry: the works of Lagrange and Poisson during the years 1808–1810 – p. 37/51



Cauchy’s paper of 1837
This short paper (6 pages), published in the Journal de
Mathématiques pures et appliquées, is extracted from a
longer paper presented by Augustin-Louis Cauchy
(1789-1857) at the Academy of Torino, on the 11th october
1831. Its title is almost the same as those of the papers by
Lagrange and Poisson.

Cauchy resolutely uses the Hamiltonian formalism. He
explains very clearly the main results due to Lagrange and
Poisson. However, he does not write Poisson brackets with
the function Ω (which is denoted by R in his paper).

Cauchy proves (without using the word matrix) that the
matrix whose coefficients are Lagrange’s parentheses of
the coordinates functions, and the matrix whose coefficients
are the Poisson brackets of the same coordinates functions,
are inverse of each other.
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Variation of constants revisited (1)

I am now going to present, in modern language and with
today’s notations, the main results due to Lagrange and
Poisson, about the method of varying constants. I will follow
Cauchy’s paper of 1837.
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Variation of constants revisited (1)

I am now going to present, in modern language and with
today’s notations, the main results due to Lagrange and
Poisson, about the method of varying constants. I will follow
Cauchy’s paper of 1837.

Let (M,ω) be a 2n-dimensional symplectic manifold, with a
(maybe time-dependent) Hamiltonian function
Q : M × R → R (it is the notation used by Cauchy). Let M0

be the manifold of motions of that Hamiltonian system and
let Φ : R × M0 → M , (t, a) 7→ Φ(t, a) be the le “flow” of the
Hamitonian vector field associated to Q. The easiest way of
writing Hamilton’s equation is the following : for each
smooth function g : M → R

∂
(
g ◦ Φ(t, a)

)

∂t
= {Q, g}

(
Φ(t, a)

)
.
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Variation of constants revisited (2)
We assume now that the system’s true Hamiltonian is
Q + R instead of Q, where R may be time dependent.
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Variation of constants revisited (2)
We assume now that the system’s true Hamiltonian is
Q + R instead of Q, where R may be time dependent.

The method of varying constants’aim is to transform the
flow of the Hamiltonian vector field associated to Q into the
flow of the Hamiltonian vector field associated to Q + R.
More precisely, its aim is to find a map Ψ : R × M0 → M1,
(t, b) 7→ a = Ψ(t, b), where M1 is the manifold of motions or
the system with Hamiltonian Q + R, such that
(t, b) 7→ Φ

(
t,Ψ(t, b)

)
is the flow of the vector field with

Hamiltonian Q + R.
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Variation of constants revisited (2)
We assume now that the system’s true Hamiltonian is
Q + R instead of Q, where R may be time dependent.

The method of varying constants’aim is to transform the
flow of the Hamiltonian vector field associated to Q into the
flow of the Hamiltonian vector field associated to Q + R.
More precisely, its aim is to find a map Ψ : R × M0 → M1,
(t, b) 7→ a = Ψ(t, b), where M1 is the manifold of motions or
the system with Hamiltonian Q + R, such that
(t, b) 7→ Φ

(
t,Ψ(t, b)

)
is the flow of the vector field with

Hamiltonian Q + R.

We must have, for any smooth function g : M → R,

d

dt

(
g ◦ Φ

(
t,Ψ(t, b)

))
= {Q + R, g}

(
Φ

(
t,Ψ(t, b)

))
.
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Variation of constants revisited (3)
For each value t0 of the time t

d

dt

(
g◦Φ

(
t,Ψ(t, b)

))∣∣∣
t=t0
=

d

dt

(
g◦Φ

(
t,Ψ(t0, b)

))∣∣∣
t=t0
+

d

dt

(
g◦Φ

(
t0,Ψ(t, b)

))∣∣∣
t=t0
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Variation of constants revisited (3)
For each value t0 of the time t

d

dt

(
g◦Φ

(
t,Ψ(t, b)

))∣∣∣
t=t0
=

d

dt

(
g◦Φ

(
t,Ψ(t0, b)

))∣∣∣
t=t0
+

d

dt

(
g◦Φ

(
t0,Ψ(t, b)

))∣∣∣
t=t0

The first term of the right hand side is, since when t0 is
fixed,

(
t,Ψ(t0, b)

)
7→ Φ

(
t,Ψ(t0, b)

)
is the flow of the vector

field with Hamiltonian Q,

d

dt

(
g ◦ Φ

(
t,Ψ(t0, b)

))∣∣∣
t=t0

= {Q, g}
(
Φ

(
t0,Ψ(t0, b)

))
.

Poisson 2008. Lausanne, July 2008 The inception of symplectic geometry: the works of Lagrange and Poisson during the years 1808–1810 – p. 40/51



Variation of constants revisited (4)
Therefore the second term of the right hand side must be

d

dt

(
g ◦ Φ

(
t0,Ψ(t, b)

))∣∣∣
t=t0

=
(
{Q + R, g} − {Q, g}

)(
Φ

(
t0,Ψ(t0, b)

))

= {R, g}M

(
Φ

(
t0,Ψ(t0, b)

))

= {R ◦ Φt0 , g ◦ Φt0}M0

(
Ψ(t0, b)

)
.

The Poisson bracket of functions on M is denoted by { , }
when there is no risk of confusion, and by { , }M when we
want to distinguish it from the Poisson bracket of functions
defined on M0, which is denoted by { , }MO

. For the last
equality, we have used the fact that Φt0 : M0 → M is a
Poisson map.
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Variation of constants revisited (5)
The function g0 = g ◦ Φt0 can be any smooth function on M0,
so the last equality may be written as

〈
dg0,

∂Ψ(t, b)

∂t

〉

t=t0

=
d
(
g0

(
Ψ(t, b)

))

dt

∣∣∣
t=t0

= {R◦Φt0 , g0}M0

(
Ψ(t0, b)

)
.
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Variation of constants revisited (5)
The function g0 = g ◦ Φt0 can be any smooth function on M0,
so the last equality may be written as

〈
dg0,

∂Ψ(t, b)

∂t

〉

t=t0

=
d
(
g0

(
Ψ(t, b)

))

dt

∣∣∣
t=t0

= {R◦Φt0 , g0}M0

(
Ψ(t0, b)

)
.

Now t0 may take any value, so the last equation proves that
for each b ∈ M1 (the manifold of motions of the system with
Hamiltonian Q + R), t 7→ Ψ(t, b) is an integal curve, drawn on
the manifold M0 of motions of the system with Hamiltonian
Q, of the Hamiltonian system with the time-dependent
Hamiltonian

(t, a) 7→ R
(
t,Φ(t, a)

)
, (t, a) ∈ R × M0 .

It is the result discovered by Lagrange around 1808.
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Thanks
I thank the organizers of the international meeting Poisson
2008, particularly Yvette Kosmann-Schwarzbach, for giving
me the opportunity to present this talk and to participate in
that meeting.
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Thanks
I thank the organizers of the international meeting Poisson
2008, particularly Yvette Kosmann-Schwarzbach, for giving
me the opportunity to present this talk and to participate in
that meeting.

My warmest thanks to
Jean-Marie Souriau, who a long time ago explained to

me what is the manifold of motions of a Hamiltonian system
and spoke to me about the works of Lagrange,

Alain Albouy who helped me to find the papers of
Lagrange and Poisson,

Patrick Iglesias who, in his beautiful book Symétries et
moment, very clearly explains the method of varying
constants and the works of Lagrange and Poisson.
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Thanks
I thank the organizers of the international meeting Poisson
2008, particularly Yvette Kosmann-Schwarzbach, for giving
me the opportunity to present this talk and to participate in
that meeting.

My warmest thanks to
Jean-Marie Souriau, who a long time ago explained to

me what is the manifold of motions of a Hamiltonian system
and spoke to me about the works of Lagrange,

Alain Albouy who helped me to find the papers of
Lagrange and Poisson,

Patrick Iglesias who, in his beautiful book Symétries et
moment, very clearly explains the method of varying
constants and the works of Lagrange and Poisson.

And I thank the persons who had the kindness and
patience for listening to my talk.
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Flow and manifold of motions

We consider the ordinary differential equation

dϕ(t)

dt
= X

(
t, ϕ(t)

)

in which X : R × M → TM is a smooth, maybe
time-dependent, vector field on a smooth manifold M .
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Flow and manifold of motions

We consider the ordinary differential equation

dϕ(t)

dt
= X

(
t, ϕ(t)

)

in which X : R × M → TM is a smooth, maybe
time-dependent, vector field on a smooth manifold M .

The flow of that differential equation is the map, defined on
an open subset of R × R × M , with values in M ,

(t, t0, x0) 7→ Φ(t, t0, x0)

such that t 7→ Φ(t, t0, x0) is the maximal solution of that
differential equation which takes the value x0 for t = t0.

∂Φ(t, t0, x0)

∂t
= X

(
t,Φ(t, t0, x0)

)
, Φ(t0, t0, x0) = x0 .
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Flow and manifold of motions (2)
The space of motions of that differential equation is the set
M̂ of all its maximal solutions t 7→ ϕ(t).
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Flow and manifold of motions (2)
The space of motions of that differential equation is the set
M̂ of all its maximal solutions t 7→ ϕ(t). That space is the
quotient of R × M by the equivalence relation

(t2, x2) and (t1, x1) are equivalent if (t2, t1, x1) belongs to
the open subset of R × R × M on which Φ is defined and

x2 = Φ(t2, t1, x1) .
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Flow and manifold of motions (2)
The space of motions of that differential equation is the set
M̂ of all its maximal solutions t 7→ ϕ(t). That space is the
quotient of R × M by the equivalence relation

(t2, x2) and (t1, x1) are equivalent if (t2, t1, x1) belongs to
the open subset of R × R × M on which Φ is defined and

x2 = Φ(t2, t1, x1) .

When Φ is defined on R × R × M , the space of motions M̂

is diffeomorphic to M . But there is no canonical
diffeomorphism of M̂ onto M : when we choose a particular
time t0 ∈ R, we have a diffeomorphism of M̂ onto M which
associates with each motion ϕ ∈ M̂ the point ϕ(t0) ∈ M . Of
course that diffeomorphism depends on t0.
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Flow and manifold of motions (3)
Generally speaking, the space of motions has a smooth
manifold structure, which may not be Hausdorff.
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Flow and manifold of motions (3)
Generally speaking, the space of motions has a smooth
manifold structure, which may not be Hausdorff.

The modified flow The value Φ(t, t0, x0) taken by the
flow Φ at time t depends on t and on the equivalence class
a ∈ M̂ of (t0, x0) ∈ R × M , rather than separately on t0 and
x0. We see indeed that if (t0, x0) and (t1, x1) are equivalent,
x1 = Φ(t1, t0, x0) and
Φ(t, t1, x1) = Φ

(
t, t1,Φ(t1, t0, x0)

)
= Φ(t, t0, x0). The modified

flow of our differential equation is the map, defined on an
open subset of R × M̂ ,

(t, a) 7→ Φ̂(t, a) = Φ(t, t0, x0) ,

where (t0, x0) ∈ R × M is any element of the equivalence
class a ∈ M̂ . In 1809, Lagrange used that point of view.
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