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I. Introduction.

The laws which govern Dynamics, formulated by Isaac Newton
in his famous book Philosophia Naturalis Principia
Mathematica [5], rest on some assumptions about the
properties of Time ans Space. In modern language, these
assumptions are
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I. Introduction.

The laws which govern Dynamics, formulated by Isaac Newton
in his famous book Philosophia Naturalis Principia
Mathematica [5], rest on some assumptions about the
properties of Time ans Space. In modern language, these
assumptions are

the motions of material bodies occurs in Space, as a
function of Time ;

a material body is at rest if its position in Space does not
depend on Time ;

Time can be mathematically modelled by an real, affine,
one-dimensional space T ;

Space can be mathematically modelled by an affine, real,
Euclidean (once a unit of length has been chosen),
three-dimensional space E .
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I. Introduction (2).

With these assumptions, the fundamental law which describes
the motion of a material point of mass m submitted to a force

−→
F ,

can be written
−−→
F (t) = m

−−−→
d2x(t)

dt2
.

In this equation, t is an element of Time T (identified with the
real line R by the choice of an orgin and a unit of Time) and x(t)
is an element of Space E , the position in Space at Time t of the
material point under consideration.
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−−→
F (t) = m

−−−→
d2x(t)

dt2
.

In this equation, t is an element of Time T (identified with the
real line R by the choice of an orgin and a unit of Time) and x(t)
is an element of Space E , the position in Space at Time t of the
material point under consideration.
−−→
F (t) is the force which, at Time t, acts on that material point.
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I. Introduction (3).

The first and second derivatives

−−→
v(t) =

−−−→
dx(t)

dt
and

−−→
a(t) =

−−−→
d2x(t)

dt2

of the position x(t) with respect to t are, respectively, the velocity
and the acceleration of the material point. They live in different
spaces : the tangent space Tx(t)E at x(t) to E , and the tangent

space T−−→
v(t)

(TE) at
−−→
v(t) to the tangent bundle TE . It is the triviality

of the tangent bundle TE , due to the affine structure of E , which
allows to consider them both as elements of the Euclidean
vector space

−→
E associated to the affine Euclidean space E .
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of the position x(t) with respect to t are, respectively, the velocity
and the acceleration of the material point. They live in different
spaces : the tangent space Tx(t)E at x(t) to E , and the tangent

space T−−→
v(t)

(TE) at
−−→
v(t) to the tangent bundle TE . It is the triviality

of the tangent bundle TE , due to the affine structure of E , which
allows to consider them both as elements of the Euclidean
vector space

−→
E associated to the affine Euclidean space E .

The force
−−→
F (t) which, at each time t, acts on the material point

is, too, an element of
−→
E .
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I. Introduction (4).

For Newton, there was a clear-cut distinction between rest and
motion of a material body.
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I. Introduction (4).

For Newton, there was a clear-cut distinction between rest and
motion of a material body.
However, the position in Space of a material body can be
appreciated only with respect to other bodies (material or
conceptual). Newton considered that the centre of the Sun (or,
maybe, the centre of mass of the Solar system) and the straight
lines which join that point to distant stars are at rest.
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I. Introduction (5).

Moreover, Newton observed that since the velocity
−−−→
dx(t)

dt
does

not appear in the equation

−−→
F (t) = m

−−−→
d2x(t)

dt2
,

that equation remains unchanged if x(t), instead of being the
absolute position in Space of the moving material point at time
t, is its relative position at that time with respect to a reference
frame whose motion in Space is a translation at a constant
velocity.
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I. Introduction (5).

Moreover, Newton observed that since the velocity
−−−→
dx(t)

dt
does

not appear in the equation

−−→
F (t) = m

−−−→
d2x(t)

dt2
,

that equation remains unchanged if x(t), instead of being the
absolute position in Space of the moving material point at time
t, is its relative position at that time with respect to a reference
frame whose motion in Space is a translation at a constant
velocity. This observation leads to the notion of inertial, or
Galilean reference frame : it is a reference frame whose
absolute motion in Space is a translation at a constant velocity.
But do the the notions of absolute rest of a material body and of
absolute motion of a reference frame in Space have really a
meaning ?
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I. Introduction (6).

If, following Leibniz, we consider that the notion of absolute rest
in Space does not mean anything, we must reconsider the
mathematical modelizations of Space and Time, and formulate
the definition of inertial frames without any reference to their
absolute motion in Space.
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In what follows we will look at several possible mathematical
modelizations of Space and Time and at the corresponding
mathematical formulations of the laws of Dynamics.
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I. Introduction (6).

If, following Leibniz, we consider that the notion of absolute rest
in Space does not mean anything, we must reconsider the
mathematical modelizations of Space and Time, and formulate
the definition of inertial frames without any reference to their
absolute motion in Space.
In what follows we will look at several possible mathematical
modelizations of Space and Time and at the corresponding
mathematical formulations of the laws of Dynamics.

First we will look at models in which the assumptions made
about Time and Space are global,

and then at models in which these assumptions are only
local. Such models are in better agreement with the wiews
presented by Bernhard Riemann in his famous inaugural lecture
Sur les hypothèses qui servent de fondement à la géométrie [6].
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II. Classical Mechanics. 1. Leibniz Space-Time

In classical (non-relativistic) Mechanics, Time has an absolute
meaning : its flow is everywhere the same. In other words, all
events which happen in the Universe can be chronologically
ordered. Time is mathematically modelled by a real affine
one-dimensional space T .
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In classical (non-relativistic) Mechanics, Time has an absolute
meaning : its flow is everywhere the same. In other words, all
events which happen in the Universe can be chronologically
ordered. Time is mathematically modelled by a real affine
one-dimensional space T .
If we consider that the notions of absolute rest and of absolute
motion have no meaning, Space cannot be mathematically
modelled by an unique Euclidean space. We must consider that
for each time t ∈ T , there exists a Space at time t, Et. Observe
that if t1 and t2 are two distinct elements of Time T , the spaces
Et1 and Et2 are disjoint.
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II. Classical Mechanics. 1. Leibniz Space-Time

In classical (non-relativistic) Mechanics, Time has an absolute
meaning : its flow is everywhere the same. In other words, all
events which happen in the Universe can be chronologically
ordered. Time is mathematically modelled by a real affine
one-dimensional space T .
If we consider that the notions of absolute rest and of absolute
motion have no meaning, Space cannot be mathematically
modelled by an unique Euclidean space. We must consider that
for each time t ∈ T , there exists a Space at time t, Et. Observe
that if t1 and t2 are two distinct elements of Time T , the spaces
Et1 and Et2 are disjoint.
The concept of fibered space is the tool able to offer, in
Classical Mechanics, a mathematical model of Space and Time
together. Unfortunately that concept did not exist when Newton
and Leibniz had a controversy about the existence of an
Absolute Space.
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II. Classical Mechanics. 1. Leibniz Space-Time (2)

In Classical Mechanics, Space-Time is mathematically
modelled by a four-dimensional manifold wich will be denoted by
L (in honour of Leibniz), fibered over the Time T . The fibration

θ : L → T

is the date map.
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is the date map.
Each element z ∈ L is an event, and the date map θ associates
to that event the time θ(z) ∈ T at which it occurs.
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II. Classical Mechanics. 1. Leibniz Space-Time (2)

In Classical Mechanics, Space-Time is mathematically
modelled by a four-dimensional manifold wich will be denoted by
L (in honour of Leibniz), fibered over the Time T . The fibration

θ : L → T

is the date map.
Each element z ∈ L is an event, and the date map θ associates
to that event the time θ(z) ∈ T at which it occurs.

For each time t ∈ T , the fibre Et = θ−1(t) is the Space at time t.
In Classical Mechanics, one assumes that each Et is a real,
affine, three-dimensional Euclidean space (once a unit of length
has been chosen).
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II. Classical Mechanics. 2. Reference frames

The standard fibre of the fibration θ : L → T of the Leibniz
Space-Time is a real affine Euclidean (once a unit of length is
chosen) three-dimensional space E . It is a mathematical
abstraction, not a real physical object. The way in which for
each time t ∈ T , the Space at time t, Et, is identified with the
standard fibre E , depends on the choice of a reference frame.
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II. Classical Mechanics. 2. Reference frames

The standard fibre of the fibration θ : L → T of the Leibniz
Space-Time is a real affine Euclidean (once a unit of length is
chosen) three-dimensional space E . It is a mathematical
abstraction, not a real physical object. The way in which for
each time t ∈ T , the Space at time t, Et, is identified with the
standard fibre E , depends on the choice of a reference frame.
A reference frame in Classical Mechanics is a trivialization

Φ : L → T × E of the fibration θ : L → T ,

that means a diffeomorphism such that p1 ◦ Φ = θ and that for
each t ∈ T , p2 ◦ Φ|Et

: Et → E is an isometry of affine Euclidean
spaces.
We have denoted by p1 and p2 the projections of T × E on T
and E , respectively.
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II. Classical Mechanics. 3. The Principle of Inertia

A free material point is a material point on which no external
force is exerted.
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II. Classical Mechanics. 3. The Principle of Inertia

A free material point is a material point on which no external
force is exerted.
For Newton, who believed in the existence of an Absolute
Space E , the motion of a material point was mathematically
represented by a continuous map t 7→ x(t), defined on Time T
(or on an interval of T ), with values in E . The Principle of Inertia
was the following statement :

Any free material point moves on a straight line in Space
E at a constant velocity.
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II. Classical Mechanics. 3. The Principle of Inertia

A free material point is a material point on which no external
force is exerted.
For Newton, who believed in the existence of an Absolute
Space E , the motion of a material point was mathematically
represented by a continuous map t 7→ x(t), defined on Time T
(or on an interval of T ), with values in E . The Principle of Inertia
was the following statement :

Any free material point moves on a straight line in Space
E at a constant velocity.

When one no more assumes the existence of an absolute
Space, E has no more a physical existence : it is only a
mathematical concept, the standard fibre of the fibered Leibniz
Space-Time θ : L → T .
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II. Classical Mechanics. 3. The Principle of Inertia (2)
The motion of a material point is now mathematically
represented by a continuous section t 7→ z(t) of the fibration
θ : L → T , defined on Time T (or on an interval of T ), with
values in Space-Time L. The relative motion of that material
point with respect to a reference frame Φ : L → T × E is the
map, defined on T , with values in E , t 7→ p2 ◦ Φ ◦ z(t).

Bi-Hamiltonian systems and all that, a conference in honour of Franco Magri, Milano, September 27th – October 1rst, 2011. Mechanics in Space-Time – p. 14/41



II. Classical Mechanics. 3. The Principle of Inertia (2)
The motion of a material point is now mathematically
represented by a continuous section t 7→ z(t) of the fibration
θ : L → T , defined on Time T (or on an interval of T ), with
values in Space-Time L. The relative motion of that material
point with respect to a reference frame Φ : L → T × E is the
map, defined on T , with values in E , t 7→ p2 ◦ Φ ◦ z(t).
The Principle of Inertia should now be stated as follows :

There exists on Space-Time at least one privileged refe-
rence frame Φ : L → T × E , called inertial, or Galilean,
such that the relative motion motion of any free material
point with respect to that frame occurs on a straight line in
the standard fibre E at a constant velocity.

The existence of one inertial frame implies the existence of an
infinite number of such frames, whose relative motions are
translations at constant velocities.
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II. Classical Mechanics. 3. The Principle of Inertia (3)
Another equivalent statement of the Principle of Inertia, which
does not use reference frames, is the following.
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II. Classical Mechanics. 3. The Principle of Inertia (3)
Another equivalent statement of the Principle of Inertia, which
does not use reference frames, is the following.

There exists on Space-Time L an affine structure such
that the map θ : L → T is an affine map and that the
motion t 7→ z(t) of any free material point is an affine map
(defined on T , or on an interval of T , with values in L).
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II. Classical Mechanics. 3. The Principle of Inertia (3)
Another equivalent statement of the Principle of Inertia, which
does not use reference frames, is the following.

There exists on Space-Time L an affine structure such
that the map θ : L → T is an affine map and that the
motion t 7→ z(t) of any free material point is an affine map
(defined on T , or on an interval of T , with values in L).

Let t 7→ z(t) be the motion of a material point. The world line of
this material point is the subset {z(t)|t ∈ T } of Leibniz
Space-Time L, and the above statement can be formulated as

There exists on Space-Time L an affine structure such
that the map θ : L → T is an affine map and that the
world line of any free material point is a (segment of a)
straight line in L.
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II. Classical Mechanics. 3. The Principle of Inertia (3)
Another equivalent statement of the Principle of Inertia, which
does not use reference frames, is the following.

There exists on Space-Time L an affine structure such
that the map θ : L → T is an affine map and that the
motion t 7→ z(t) of any free material point is an affine map
(defined on T , or on an interval of T , with values in L).

Let t 7→ z(t) be the motion of a material point. The world line of
this material point is the subset {z(t)|t ∈ T } of Leibniz
Space-Time L, and the above statement can be formulated as

There exists on Space-Time L an affine structure such
that the map θ : L → T is an affine map and that the
world line of any free material point is a (segment of a)
straight line in L.

A reference frame Φ : L → T × E is inertial if and only if it is an
affine spaces isomorphism.
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II. Classical Mechanics. 4. Equations of motion of material points

Let t 7→ z(t) be the motion of a (maybe non-free) material point :
it is a (local) section of the fibration θ : L → T , i.e. a map
ϕ : I → L, defined on an open interval I of T , such that
θ ◦ ϕ = idI . If this map is smooth at t ∈ I, once a unit of time has
been chosen, the derivative

−−→
w(t) =

−−−→
dz(t)

dt

can be defined. It is the vector, tangent to the world line at z(t),

whose projection by Tθ : TL → TT is the unit vector of
−→
T . We

will call it the world velocity of the material point at z(t).
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II. Classical Mechanics. 4. Equations of motion of material points (2)

The affine structure of L determines a natural trivialization of its
tangent bundle TL, identified with L ×

−→
L . If the map ϕ is C2 at

t ∈ I we can define the acceleration vector

−−→
a(t) =

−−−→
d2z(t)

dt2

and consider it as an element of the tangent space Tz(t)L,

canonically isomorphic to the Euclidean vector space
−→
L

asssociated to the affine space L.
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II. Classical Mechanics. 4. Equations of motion of material points (2)

The affine structure of L determines a natural trivialization of its
tangent bundle TL, identified with L ×

−→
L . If the map ϕ is C2 at

t ∈ I we can define the acceleration vector

−−→
a(t) =

−−−→
d2z(t)

dt2

and consider it as an element of the tangent space Tz(t)L,

canonically isomorphic to the Euclidean vector space
−→
L

asssociated to the affine space L.
More precisely, since Tθ maps the world velocity onto the unit

vector of
−→
T , the acceleration vector

−−→
a(t) lives in the tangent

space Tz(t)Et, subset of the tangent space Tz(t)L, canonically

isomorphic to the Euclidean vector space
−→
E asssociated to the

affine space (standard fibre) E .
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II. Classical Mechanics. 4. Equations of motion of material points (3)

The equation of motion of the material point can therefore be
written as

m

−−−→
d2z(t)

dt2
=

−→
F

(

z(t),

−−−→
dz(t)

dt

)

,

where m is the mass of the material point and
−→
F the force which

acts on it, which may depend on its location in Space-Time z(t)

and on its world velocity
−−−→
dz(t)

dt
. At each time t, the force

−→
F is an

element of Tz(t)Et, the tangent space at z(t) to the fibre Et.
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II. Classical Mechanics. 4. Equations of motion of material points (3)

The equation of motion of the material point can therefore be
written as

m

−−−→
d2z(t)

dt2
=

−→
F

(

z(t),

−−−→
dz(t)

dt

)

,

where m is the mass of the material point and
−→
F the force which

acts on it, which may depend on its location in Space-Time z(t)

and on its world velocity
−−−→
dz(t)

dt
. At each time t, the force

−→
F is an

element of Tz(t)Et, the tangent space at z(t) to the fibre Et.

Observe that this equation does not use any reference frame.
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II. Classical Mechanics. 4. Equations of motion of material points (3)

The equation of motion of the material point can therefore be
written as

m

−−−→
d2z(t)

dt2
=

−→
F

(

z(t),

−−−→
dz(t)

dt

)

,

where m is the mass of the material point and
−→
F the force which

acts on it, which may depend on its location in Space-Time z(t)

and on its world velocity
−−−→
dz(t)

dt
. At each time t, the force

−→
F is an

element of Tz(t)Et, the tangent space at z(t) to the fibre Et.

Observe that this equation does not use any reference frame.
The equations of motion of mechanical systems more
complicated than material points are usually derived from a
Lagrangian or from a Hamiltonian, which depend on the choice
of a reference frame.
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II. Classical Mechanics. 5. The Galilean group

Let us equip the product T × E with the product affine space
structure of the affine space structures of its two factors.
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II. Classical Mechanics. 5. The Galilean group

Let us equip the product T × E with the product affine space
structure of the affine space structures of its two factors.
A Galilean transformation of T × E is an affine transformation of
that space, g : (t, x) 7→ (t′, x′), t and t′ ∈ T , x and x′ ∈ E , such
that

t′ does not depend on x, and t 7→ t′ is a translation of T ,
for each fixed t ∈ T , the map x 7→ x′ is an orientation

preserving isometry of E .
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II. Classical Mechanics. 5. The Galilean group

Let us equip the product T × E with the product affine space
structure of the affine space structures of its two factors.
A Galilean transformation of T × E is an affine transformation of
that space, g : (t, x) 7→ (t′, x′), t and t′ ∈ T , x and x′ ∈ E , such
that

t′ does not depend on x, and t 7→ t′ is a translation of T ,
for each fixed t ∈ T , the map x 7→ x′ is an orientation

preserving isometry of E .
The set of all Galilean transformations of T × E is the Galilean
group of that space. It is a connected real 10-dimensional Lie
group, denoted by Galileo(T × E). Let Φ : L → T × L be an
inertial frame. The map

(g, z) 7→ Φ−1 ◦ g ◦ Φ(z) , z ∈ L , g ∈ Galileo(T × E) ,

is an action of the Galilean group on Leibniz Space-Time L.
Bi-Hamiltonian systems and all that, a conference in honour of Franco Magri, Milano, September 27th – October 1rst, 2011. Mechanics in Space-Time – p. 19/41



III. Other possible assumptions. 1. A non-Euclidean Space

Global assumptions about Time and Space, slightly different
from those used in Classical Mechanics, seem possible.
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III. Other possible assumptions. 1. A non-Euclidean Space

Global assumptions about Time and Space, slightly different
from those used in Classical Mechanics, seem possible.
For example, we may still assume that Time is modelled by a
real, affine one-dimensional space T , and Space-Time by a real
four-dimensional manifold U , fibered over Time T by a date map
θ : U → T . But instead of assuming that the fibres θ−1(t), t ∈ T ,
are real, affine Euclidean three-dimensional spaces, we can
assume that these fibres are real Riemannian
three-dimensional homogeneous spaces : positively curved
spheres S3, or negatively curved sheets of hyperboloids H3.
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III. Other possible assumptions. 1. A non-Euclidean Space

Global assumptions about Time and Space, slightly different
from those used in Classical Mechanics, seem possible.
For example, we may still assume that Time is modelled by a
real, affine one-dimensional space T , and Space-Time by a real
four-dimensional manifold U , fibered over Time T by a date map
θ : U → T . But instead of assuming that the fibres θ−1(t), t ∈ T ,
are real, affine Euclidean three-dimensional spaces, we can
assume that these fibres are real Riemannian
three-dimensional homogeneous spaces : positively curved
spheres S3, or negatively curved sheets of hyperboloids H3.
Let us look at what can be said about the Principle of Inertia
and about inertial frames under such assumptions.
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III. Other possible assumptions. 1. A non-Euclidean Space (2)

We now assume that Space-Time is a smooth 4-dimensional
manifold U fibered over Time T by a date map θ : U → T ,
whose fibres θ−1(t) are 3-dimensional Riemannian
homogeneous spaces of a Lie group G. We assume that G is
the group of orientation-preserving isometries of the standard
fibre M of the fibered space U .
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III. Other possible assumptions. 1. A non-Euclidean Space (2)

We now assume that Space-Time is a smooth 4-dimensional
manifold U fibered over Time T by a date map θ : U → T ,
whose fibres θ−1(t) are 3-dimensional Riemannian
homogeneous spaces of a Lie group G. We assume that G is
the group of orientation-preserving isometries of the standard
fibre M of the fibered space U .
A reference frame is a trivialization Φ : U → T ×M of the
fibered space U . The motion of a material point is a smooth
section ϕ : I → U of the fibration θ, defined on an open interval
of time I ⊂ T , with values in U . The relative motion of that
material point with respect to the reference frame Φ is the map
p2 ◦ Φ ◦ ϕ : I → M, where p2 : T ×M → M is the second
projection.
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III. Other possible assumptions. 1. A non-Euclidean Space (2)

We now assume that Space-Time is a smooth 4-dimensional
manifold U fibered over Time T by a date map θ : U → T ,
whose fibres θ−1(t) are 3-dimensional Riemannian
homogeneous spaces of a Lie group G. We assume that G is
the group of orientation-preserving isometries of the standard
fibre M of the fibered space U .
A reference frame is a trivialization Φ : U → T ×M of the
fibered space U . The motion of a material point is a smooth
section ϕ : I → U of the fibration θ, defined on an open interval
of time I ⊂ T , with values in U . The relative motion of that
material point with respect to the reference frame Φ is the map
p2 ◦ Φ ◦ ϕ : I → M, where p2 : T ×M → M is the second
projection.
The reference frame Φ : U → T ×M is inertial if the relative
motion of any free material point takes place on an arc of
geodesic of the Riemannian manifold M, at a constant velocity.
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III. Other possible assumptions. 1. A non-Euclidean Space (3)

Let Φ : U → T ×M and Ψ : U → T ×M be two reference
frames. The change of reference frame
Ψ ◦ Φ−1 : T ×M → T ×M can be written as

(t,m) 7→ (t, g(t)m) , t ∈ T , m ∈ M ,

where t 7→ g(t) is a smooth map defined on T , with value in the
group G.
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III. Other possible assumptions. 1. A non-Euclidean Space (3)

Let Φ : U → T ×M and Ψ : U → T ×M be two reference
frames. The change of reference frame
Ψ ◦ Φ−1 : T ×M → T ×M can be written as

(t,m) 7→ (t, g(t)m) , t ∈ T , m ∈ M ,

where t 7→ g(t) is a smooth map defined on T , with value in the
group G.
Assume that Φ is inertial. Then Ψ is inertial if and only if for any
affinely parametrized geodesic t 7→ m(t) in M (t ∈ T ), the curve
t 7→ g(t)

(

m(t)
)

too is an affinely parametrized geodesic in M .
Since points in M (considered as constant curves) are
geodesics, a necessary condition unless which Ψ cannot be an
inertial frame is
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III. Other possible assumptions. 1. A non-Euclidean Space (3)

Let Φ : U → T ×M and Ψ : U → T ×M be two reference
frames. The change of reference frame
Ψ ◦ Φ−1 : T ×M → T ×M can be written as

(t,m) 7→ (t, g(t)m) , t ∈ T , m ∈ M ,

where t 7→ g(t) is a smooth map defined on T , with value in the
group G.
Assume that Φ is inertial. Then Ψ is inertial if and only if for any
affinely parametrized geodesic t 7→ m(t) in M (t ∈ T ), the curve
t 7→ g(t)

(

m(t)
)

too is an affinely parametrized geodesic in M .
Since points in M (considered as constant curves) are
geodesics, a necessary condition unless which Ψ cannot be an
inertial frame is

for each m ∈ M, the curve t 7→ g(t)m, t ∈ T , is an affinely
parametrized geodesic in M.
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III. Other possible assumptions. 1. A non-Euclidean Space (4)

By choosing an origin 0 and a unit of Time, we now identify T
with R. When the above stated necessary condition is satisfied,
for each m ∈ M, the curve t 7→ g(t)m is an affinely parametrized
geodesic in M. Consequently
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III. Other possible assumptions. 1. A non-Euclidean Space (4)

By choosing an origin 0 and a unit of Time, we now identify T
with R. When the above stated necessary condition is satisfied,
for each m ∈ M, the curve t 7→ g(t)m is an affinely parametrized
geodesic in M. Consequently

the map T ×M → M, (t,m) 7→ g(t) ◦
(

g(0))−1m is the flow of
a smooth vector field on M, whose integral curves are affinely
parametrized geodesics ;
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III. Other possible assumptions. 1. A non-Euclidean Space (4)

By choosing an origin 0 and a unit of Time, we now identify T
with R. When the above stated necessary condition is satisfied,
for each m ∈ M, the curve t 7→ g(t)m is an affinely parametrized
geodesic in M. Consequently

the map T ×M → M, (t,m) 7→ g(t) ◦
(

g(0))−1m is the flow of
a smooth vector field on M, whose integral curves are affinely
parametrized geodesics ;

the map t 7→ g(t)
(

g(0)
)−1

is a one-parameter subgroup of G.
In other terms, there exists X ∈ G (the Lie algebra of G) such
that

g(t)
(

g(0)
)−1

= exp(tX) , or g(t) = exp(tX)g(0) .
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III. Other possible assumptions. 1. A non-Euclidean Space (5)

Therefore a necessary condition for the existence of
non-constant curves t 7→ g(t) in G such that (t,m) 7→

(

t, g(t)m
)

is a change of inertial reference frames, is the existence of
non-zero elements X in the Lie algebra G of G such that, for any
m ∈ M, the curve t 7→ exp(tX)m is an affinely-parametrized
geodesic in M.
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III. Other possible assumptions. 1. A non-Euclidean Space (5)

Therefore a necessary condition for the existence of
non-constant curves t 7→ g(t) in G such that (t,m) 7→

(

t, g(t)m
)

is a change of inertial reference frames, is the existence of
non-zero elements X in the Lie algebra G of G such that, for any
m ∈ M, the curve t 7→ exp(tX)m is an affinely-parametrized
geodesic in M.
In the usual case of Classical Mechanics, M is a 3-dimensional
affine Euclidean space and G is the Lie group of affine
displacements of E . For any infinitesimal translation X of E , the
curves t 7→ exp(tX)m (where m may be any point in E) are
parallel straight lines. We have indeed infinitely many inertial
reference frames whose relative motions are translations at
constant velocities.
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III. Other possible assumptions. 1. A non-Euclidean Space (6)

If M is a three-dimensional sphere S3, the group G is SO(4),
and if M is a sheet of a three-dimensional hyperboloid H3, the
group G is the Lorentz group SO(3, 1). In both cases, the above
necessary condition for the existence of non-trivial changes of
inertial reference frame is not fulfillled. Therefore
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III. Other possible assumptions. 1. A non-Euclidean Space (6)

If M is a three-dimensional sphere S3, the group G is SO(4),
and if M is a sheet of a three-dimensional hyperboloid H3, the
group G is the Lorentz group SO(3, 1). In both cases, the above
necessary condition for the existence of non-trivial changes of
inertial reference frame is not fulfillled. Therefore

When Space is modelled by a non-Euclidean Rieman-
nian homogeneous manifold of constant non-zero curva-
ture, there are no non-trivial changes of inertial reference
frame, and nothing similar to the Galilean group.
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III. Other possible assumptions. 2. The Kepler connection

The Principle of Inertia describes the way in which a free
material point evolves in Space-Time. It can be stated as
follows.

There exists on Space-Time a linear connection such that
the world line of any free material point is a solution of the
second-order differential equation

∇ dz(t)
dt

dz(t)

dt
= 0 ,

where ∇ is the operator of covariant derivation of that
connection.
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III. Other possible assumptions. 2. The Kepler connection

The Principle of Inertia describes the way in which a free
material point evolves in Space-Time. It can be stated as
follows.

There exists on Space-Time a linear connection such that
the world line of any free material point is a solution of the
second-order differential equation

∇ dz(t)
dt

dz(t)

dt
= 0 ,

where ∇ is the operator of covariant derivation of that
connection.

The above statement uses only a local mathematical object : a
linear connection, while other statements of the same Principle
presented before used global mathematical objects : geodesics,
either of the standard fibre of the fibered Space-Time, or of
Space-Time itself.
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III. Other possible assumptions. 2. The Kepler connection (2)

The very notion of free material point, together with the physical
origin of Inertia, were questioned by Ernst Mach (1838–1916)
[4]. He did not accept the existence of an absolute Space and
expressed the idea that the inertia of a material point was due
to the influence, on that material point, of all other masses in the
Universe. For him, no material point is really free and the Inertia
of a material point is simply a way to take into account the
effects of all other massive objects whose influence is not
explicitly described by a force acting on the considered material
point.
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III. Other possible assumptions. 2. The Kepler connection (2)

The very notion of free material point, together with the physical
origin of Inertia, were questioned by Ernst Mach (1838–1916)
[4]. He did not accept the existence of an absolute Space and
expressed the idea that the inertia of a material point was due
to the influence, on that material point, of all other masses in the
Universe. For him, no material point is really free and the Inertia
of a material point is simply a way to take into account the
effects of all other massive objects whose influence is not
explicitly described by a force acting on the considered material
point.

Motivated by Einstein’s Theory of General Relativity, Élie
Cartan proposed [1,2] to use connections in classical
Mechanics, to include not only inertia, but also gravitational
forces in the geometry of Space-Time. We describe below a
Space-Time endowed with a connection whose geodesics are
the Keplerian trajectories of planets in the Solar system.
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III. Other possible assumptions. 2. The Kepler connection (3)

We take for Space-Time U = {(t, x, y, z) ∈ R
4 | x2 + y2 + z2 6= 0}

and for Time T = R with t as coordinate. The date map is
θ : (t, x, y, z) 7→ t. To make notations more convenient, we set
x0 = t, x1 = x, x2 = y, x3 = z. Possible values of Latin indices i,
j, . . ., will be 1, 2 or 3. We set r2 = x2 + y2 + z2.
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III. Other possible assumptions. 2. The Kepler connection (3)

We take for Space-Time U = {(t, x, y, z) ∈ R
4 | x2 + y2 + z2 6= 0}

and for Time T = R with t as coordinate. The date map is
θ : (t, x, y, z) 7→ t. To make notations more convenient, we set
x0 = t, x1 = x, x2 = y, x3 = z. Possible values of Latin indices i,
j, . . ., will be 1, 2 or 3. We set r2 = x2 + y2 + z2.
We define on U a linear connection, called the Kepler
connection, whose non-zero Christoffel symbols are

Γi
0 0 = −

kxi

r3
where k > 0 is a positive constant .
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III. Other possible assumptions. 2. The Kepler connection (4)

A parametrized curve s 7→
(

t(s), x(s), y(s), z(s)
)

is a geodesic of
the Kepler connection if and only if it is an integral curve of the
second order differential equation

dt(s)

ds
= v0(s) ,

dxi(s)

ds
= vi(s) ,

dv0(s)

ds
= 0 ,

dvi(s)

ds
= −

k
(

v0(s)
)2
xi

r3
.
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III. Other possible assumptions. 2. The Kepler connection (4)

A parametrized curve s 7→
(

t(s), x(s), y(s), z(s)
)

is a geodesic of
the Kepler connection if and only if it is an integral curve of the
second order differential equation

dt(s)

ds
= v0(s) ,

dxi(s)

ds
= vi(s) ,

dv0(s)

ds
= 0 ,

dvi(s)

ds
= −

k
(

v0(s)
)2
xi

r3
.

We see that v0(s) is a constant v0. A geodesic will be said
Space-like if v0 = 0 and Time-like if v0 6= 0.

Space-like geodesics are straight lines contained in
hyperplanes t = Constant.

Time-like geodesics are Kepler trajectories of planets, the
attractive centre being at r = 0.
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III. Other possible assumptions. 2. The Kepler connection (5)

The torsion of the Kepler connection is zero and the only
non-zero components of its Riemann-Christoffel curvature
tensor are

Rk
i 0 0 = −Rk

0 i 0 = −
∂

∂xi

(

kxk

r3

)

, 1 ≤ i, k ≤ 3 .

Bi-Hamiltonian systems and all that, a conference in honour of Franco Magri, Milano, September 27th – October 1rst, 2011. Mechanics in Space-Time – p. 30/41



III. Other possible assumptions. 2. The Kepler connection (5)

The torsion of the Kepler connection is zero and the only
non-zero components of its Riemann-Christoffel curvature
tensor are

Rk
i 0 0 = −Rk

0 i 0 = −
∂

∂xi

(

kxk

r3

)

, 1 ≤ i, k ≤ 3 .

Remark The Kepler connection becomes singulal for r = 0.
It may be possible to build on Space-Time a connection for
which collisions with the attractive center are regularized. But at
the price of deleting the assumption of the existence of an
absolute Time, since regularization of collisions uses as
parameter the Levi-Civita parameter which is not a smooth
function of Time.
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III. Other possible assumptions. 3. Compatibility with a date map

We still assume that Space Time is a 4-dimensional manifold U ,
fibered over Time T , which is a real affine 1-dimensional space,
by a date map θ : U → T .
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III. Other possible assumptions. 3. Compatibility with a date map

We still assume that Space Time is a 4-dimensional manifold U ,
fibered over Time T , which is a real affine 1-dimensional space,
by a date map θ : U → T .
A linear connection on U such that the world lines of free
material points (or more generally material points submitted to
gravitational forces of distant objects) are affinely parametrized
geodesics, must satisfy the following condition, which expresses
the fact that Time flows at a constant velocity.
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III. Other possible assumptions. 3. Compatibility with a date map

We still assume that Space Time is a 4-dimensional manifold U ,
fibered over Time T , which is a real affine 1-dimensional space,
by a date map θ : U → T .
A linear connection on U such that the world lines of free
material points (or more generally material points submitted to
gravitational forces of distant objects) are affinely parametrized
geodesics, must satisfy the following condition, which expresses
the fact that Time flows at a constant velocity.

For any geodesic s 7→ z(s) in U , the length of the vector

Tθ

(

dz(s)

ds

)

does not depend on s.

Indeed, the existence of an affine structure on T allows us to
compare the lengths of vectors tangent to T at different points.
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III. Other possible assumptions. 3. Compatibility with a date map (2)

In terms of the Christoffel symbols associated with local
coordinates (x0 = t, x1, x2, x3) on U , x0 = t being the time, the
above condition is

Γ0
i j = 0 for all i, j, 0 ≤ i, j ≤ 3 .
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III. Other possible assumptions. 3. Compatibility with a date map (2)

In terms of the Christoffel symbols associated with local
coordinates (x0 = t, x1, x2, x3) on U , x0 = t being the time, the
above condition is

Γ0
i j = 0 for all i, j, 0 ≤ i, j ≤ 3 .

An equivalent, but more geometric way of expressing this
condition uses the fact that the tangent space TU is foliated into
codimension-1 leaves, each leaf being the set of vectors w ∈ TU
such that Tθ(w) is a vector tangent to T of a given length. The
above condition amounts to say that the geodesic flow preseves
this foliation, or in other words that for each w ∈ TU , the subset
Cw of horizontal vectors tangent to TU at w is tangent to the leaf
containing w.
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III. Other possible assumptions. 4. The Lagrange 2-form

In his book Structure des systèmes dynamiques [7], J. M
Souriau defines and uses the Space of Evolution of a
mechanical system. For a material point evolving in Leibniz
Space-Time L, it is the 7-dimensional space made by all the
possible values of (t, x,−→v ), where

t ∈ T is the time,
x ∈ E is the position the material point observed in a given

inertial reference frame Φ : L → T × E ,
and −→v ∈

−→
E is its velocity vector with respect to the same

reference frame).
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III. Other possible assumptions. 4. The Lagrange 2-form

In his book Structure des systèmes dynamiques [7], J. M
Souriau defines and uses the Space of Evolution of a
mechanical system. For a material point evolving in Leibniz
Space-Time L, it is the 7-dimensional space made by all the
possible values of (t, x,−→v ), where

t ∈ T is the time,
x ∈ E is the position the material point observed in a given

inertial reference frame Φ : L → T × E ,
and −→v ∈

−→
E is its velocity vector with respect to the same

reference frame).
The Lagrange 2-form on this Space of Evolution is (m being the
mass of the particle, and

−→
f ∈

−→
E the force which acts on it,

assumed to be a given function of (t, x,−→v ))

ωΦ = (m
−→
dv−

−→
f dt)∧ (

−→
dx−−→v dt) =

3
∑

i=1

(mdvi−f i dt)∧ (dxi−vi dt) .
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III. Other possible assumptions. 4. The Lagrange 2-form (2)

The Space of Evolution of a more general mechanical system
with n degrees of freedom is a (2n+ 1)-dimensional manifold on
which one can define a Lagrange 2-form ω. When the system is
regular the rank of ω is 2n and the lines which describe the time
evolution of the system are the integral curves of the rank-1
distribution kerω.
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III. Other possible assumptions. 4. The Lagrange 2-form (2)

The Space of Evolution of a more general mechanical system
with n degrees of freedom is a (2n+ 1)-dimensional manifold on
which one can define a Lagrange 2-form ω. When the system is
regular the rank of ω is 2n and the lines which describe the time
evolution of the system are the integral curves of the rank-1
distribution kerω.
Let us come back to the Space of Evolution of a material point
and to its Lagrange 2-form. The above definitions are given in
terms of a given inertial reference frame. However, these
definitions can be adapted to avoid the use of any reference
frame. Once a unit of Time has been chosen, we can define the
sub-bundle of the tangent bundle to Space-Time

T 1L = {w ∈ TL | Tθ(w) = 1} .
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III. Other possible assumptions. 4. The Lagrange 2-form (3)

For each inertial reference frame Φ : L → T × E , the map
TΦ : TL → T (T × E), restricted to T 1L is a diffeomorphism Ψ

from T 1L onto the Space of Evolution defined with the use of
the reference frame Φ. We can therefore take the pull-back
ω = Ψ∗ωΦ of the Lagrange 2-form ωΦ defined with the use of Φ.
The 2-form ω does not depend on the choice of the inertial
reference frame Φ.
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III. Other possible assumptions. 4. The Lagrange 2-form (3)

For each inertial reference frame Φ : L → T × E , the map
TΦ : TL → T (T × E), restricted to T 1L is a diffeomorphism Ψ

from T 1L onto the Space of Evolution defined with the use of
the reference frame Φ. We can therefore take the pull-back
ω = Ψ∗ωΦ of the Lagrange 2-form ωΦ defined with the use of Φ.
The 2-form ω does not depend on the choice of the inertial
reference frame Φ.
The Space of Evolution of our material point, equipped with its
Lagrange 2-form, (T 1L, ω), is now well defined, independently of
any choice of a particular reference frame.
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III. Other possible assumptions. 4. The Lagrange 2-form (3)

For each inertial reference frame Φ : L → T × E , the map
TΦ : TL → T (T × E), restricted to T 1L is a diffeomorphism Ψ

from T 1L onto the Space of Evolution defined with the use of
the reference frame Φ. We can therefore take the pull-back
ω = Ψ∗ωΦ of the Lagrange 2-form ωΦ defined with the use of Φ.
The 2-form ω does not depend on the choice of the inertial
reference frame Φ.
The Space of Evolution of our material point, equipped with its
Lagrange 2-form, (T 1L, ω), is now well defined, independently of
any choice of a particular reference frame.
Souriau calls Principle of Maxwell the property

dω = 0 .

It imposes strong restrictions on the way in which the force
−→
f

depends on (t, x,−→v ).
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Summary and conclusion

In Classical Mechanics, Time has an absolute character and
is mathematically modelled by a real affine one-dimensional
space T . Space is mathematically modelled by a real,
four-dimensional manifold L, fibered on T by a date map
θ : L → T .
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space T . Space is mathematically modelled by a real,
four-dimensional manifold L, fibered on T by a date map
θ : L → T .

For each t ∈ T , Et = θ−1(t) is the Space at time t. Once a
unit of length has been chosen, it has the structure of a real
three-dimensional affine Euclidean space.
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In Classical Mechanics, Time has an absolute character and
is mathematically modelled by a real affine one-dimensional
space T . Space is mathematically modelled by a real,
four-dimensional manifold L, fibered on T by a date map
θ : L → T .

For each t ∈ T , Et = θ−1(t) is the Space at time t. Once a
unit of length has been chosen, it has the structure of a real
three-dimensional affine Euclidean space.

The Principle of Inertia can be expressed as follows : There
exists on Space-Time L an affine space structure such that the
date map θ : L → T is an affine map and that the motion of any
free material point is an affine section of the fibration θ.
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Summary and conclusion

In Classical Mechanics, Time has an absolute character and
is mathematically modelled by a real affine one-dimensional
space T . Space is mathematically modelled by a real,
four-dimensional manifold L, fibered on T by a date map
θ : L → T .

For each t ∈ T , Et = θ−1(t) is the Space at time t. Once a
unit of length has been chosen, it has the structure of a real
three-dimensional affine Euclidean space.

The Principle of Inertia can be expressed as follows : There
exists on Space-Time L an affine space structure such that the
date map θ : L → T is an affine map and that the motion of any
free material point is an affine section of the fibration θ.

Let E be the standard fibre of the fibered Space-Time
θ : L → T . A reference frame is a global trivialization Φ : L → E
of the ifibered Space-Time L. The reference frame Φ is inertial
(or Galilean) if it is an affine map.
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Summary and conclusion (2)
The Galilean group is the group of changes of Galilean

reference frames plus the translations in Time.
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Summary and conclusion (2)
The Galilean group is the group of changes of Galilean

reference frames plus the translations in Time.
If we assume that Space is curved, i.e., that instead of being

an affine Euclidean space, the standard fibre E of the fibration
θ : L → T is an homogeneous Riemannian space of constant
non-zero curvature, (a Sphere S3, homogeneous space of
SO(4), or a sheet of hyperboloid H3, homogeneous space of
SO(3, 1)), there is no analogue of the Galilean group : the
inertial reference frame is essentially unique, up to a fixed
change of frame in Space.
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Summary and conclusion (2)
The Galilean group is the group of changes of Galilean

reference frames plus the translations in Time.
If we assume that Space is curved, i.e., that instead of being

an affine Euclidean space, the standard fibre E of the fibration
θ : L → T is an homogeneous Riemannian space of constant
non-zero curvature, (a Sphere S3, homogeneous space of
SO(4), or a sheet of hyperboloid H3, homogeneous space of
SO(3, 1)), there is no analogue of the Galilean group : the
inertial reference frame is essentially unique, up to a fixed
change of frame in Space.

As observed by É. Cartan, instead of a global structure
(such as an affine structure), on can use a local structure, such
as a connection, for the formulation of the Principle of Inertia.
Gravitational forces can be included in the geometry of
Space-Time. We gave an example of a linear connection whose
geodesics are models of the Keplerian orbits of planets.

Bi-Hamiltonian systems and all that, a conference in honour of Franco Magri, Milano, September 27th – October 1rst, 2011. Mechanics in Space-Time – p. 37/41



Summary and conclusion (3)

The existence of a date map imposes strong restrictions on
the linear connection on Space-Time used for the mathematical
formulation of the Principle of Inertia.

Bi-Hamiltonian systems and all that, a conference in honour of Franco Magri, Milano, September 27th – October 1rst, 2011. Mechanics in Space-Time – p. 38/41



Summary and conclusion (3)

The existence of a date map imposes strong restrictions on
the linear connection on Space-Time used for the mathematical
formulation of the Principle of Inertia.

Once global assumptions on Space have been deleted, it
seems natural to question the validity of the assumption about
the existence of an absolute Time. If we delete this very strong
global assumption, we no more have a date map, and enter the
realm of Relativity theories.
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Summary and conclusion (3)

The existence of a date map imposes strong restrictions on
the linear connection on Space-Time used for the mathematical
formulation of the Principle of Inertia.

Once global assumptions on Space have been deleted, it
seems natural to question the validity of the assumption about
the existence of an absolute Time. If we delete this very strong
global assumption, we no more have a date map, and enter the
realm of Relativity theories.

In Classical Mechanics, the Lagrangian and Hamiltonian
formalisms are linked to the use of an inertial frame. The
notions of Space of Evolution and of 2-form of Lagrange can be
expressed in Space-Time, without any choice of a particular
reference frame.
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Thanks

It was a pleasure and a honour for me to participate to this
conference in honour of my colleague and friend Franco Magri,
and to listen to the very nice lectures of all the other
participants. My warmest thanks to the organizers, Professor
G. Falqui, Professor B. Konopelchenko and Professor
M. Pedroni for their generous and friendly hospitality.
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G. Falqui, Professor B. Konopelchenko and Professor
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I address my thanks to the persons patient enough who made
me the honour of listening to my talk.
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Thanks

It was a pleasure and a honour for me to participate to this
conference in honour of my colleague and friend Franco Magri,
and to listen to the very nice lectures of all the other
participants. My warmest thanks to the organizers, Professor
G. Falqui, Professor B. Konopelchenko and Professor
M. Pedroni for their generous and friendly hospitality.
I address my thanks to the persons patient enough who made
me the honour of listening to my talk.

Happy birthday, Professor Magri, and many

more happy years with a lot of beautiful

scientific achievements !
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