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Introduction

Around 1950, P. Dirac developed a Generalized
Hamiltonian dynamics for Lagrangian systems with
degenerate Lagrangians. In this theory, the phase space of
the system (i.e. the cotangent bundle to the configuration
manifold) is endowed with two Poisson brackets:
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Introduction

Around 1950, P. Dirac developed a Generalized
Hamiltonian dynamics for Lagrangian systems with
degenerate Lagrangians. In this theory, the phase space of
the system (i.e. the cotangent bundle to the configuration
manifold) is endowed with two Poisson brackets:

the usual Poisson bracket associated to its symplectic
structure,

a modified Poisson bracket (today known as the Dirac
bracket), used by Dirac for the canonical quantization of the
system.
I what follows I will describe Dirac’s theory of generalized
Hamiltonian dynamics, and I will consider its links with the
theory of bihamiltonian systems.
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Lagrangian formalism

We consider a mechanical system with a smooth manifold
Q as configuration space. The dynamical properties of the
system are described by a smooth Lagrangian L : TQ → R.
Possible motions of the system are curves t 7→ q(t),
parametrized by the time t, defined on intervals [t0, t1] ⊂ R,
which are extremals of the action integral

I =

∫ t1

t0

L

(
dq(t)

dt

)
dt ,

with fixed endpoints.
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Lagrangian formalism and Legendre map (1)
The curve t 7→ q(t) is an extremal of the action integral if
and only if it satisfies Lagrange equations, which, in a chart
of Q with local coordinates (q1, . . . , qn), and the associated
chart of TQ with local coordinates (q1, . . . , qn, q̇1, . . . , q̇n), are

d

dt

(
∂L(q, q̇)

∂q̇i

)
−

∂L(q, q̇)

∂qi
= 0 , 1 ≤ i ≤ n .
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Lagrangian formalism and Legendre map (1)
The curve t 7→ q(t) is an extremal of the action integral if
and only if it satisfies Lagrange equations, which, in a chart
of Q with local coordinates (q1, . . . , qn), and the associated
chart of TQ with local coordinates (q1, . . . , qn, q̇1, . . . , q̇n), are

d

dt

(
∂L(q, q̇)

∂q̇i

)
−

∂L(q, q̇)

∂qi
= 0 , 1 ≤ i ≤ n .

When the Legendre map

L : TQ → T ∗Q , (q, q̇) 7→ (q, p) with pi =
∂L(q, q̇)

∂q̇i

is a (local) diffeomorphism, one may (locally) define a
Hamiltonian H on T ∗Q by setting

H(q, p) =
n∑

i=1

q̇ipi − L(q, q̇) ,
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Lagrangian formalism and Legendre map (2)
where q̇i and (q, q̇) = L−1(q, p) are expressed in terms of
(q, p) by means of the (local) inverse L−1 of the Legendre
map. Under these assumptions, Lagrange equations are
(locally) equivalent to Hamilton equations,

dqi

dt
=

∂H(q, p)

∂pi
,

dpi

dt
= −

∂H(q, p)

∂qi
.
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Lagrangian formalism and Legendre map (2)
where q̇i and (q, q̇) = L−1(q, p) are expressed in terms of
(q, p) by means of the (local) inverse L−1 of the Legendre
map. Under these assumptions, Lagrange equations are
(locally) equivalent to Hamilton equations,

dqi

dt
=

∂H(q, p)

∂pi
,

dpi

dt
= −

∂H(q, p)

∂qi
.

When the Legendre map is not a (local) diffeomorphism, we
still can define a Hamiltonian on TQ ⊕ T ∗Q by

H(q, q̇, p) =
n∑

i=1

q̇ipi − L(q, q̇) .

That Hamiltonian is not a function defined on T ∗Q.
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Primary constraints (1)

Dirac does not assume that the Legendre map is a local
diffeomorphism. Instead, he (tacitly) assumes that it is a
map of constant rank 2n − r, with 1 ≤ r ≤ n. Let
D0 = L(TQ) be its image. Dirac assumes that there exist r

smooth functions Φα : T ∗Q → R, 1 ≤ α ≤ r, such that D0 is
defined by the equations

Φα = 0 , 1 ≤ α ≤ r ,

the dΦα being linearly independent on D0. These equations
are called primary constraints. The functions Φα are called
the primary constraint functions.
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Primary constraints (2)
These assumptions are valid locally: since L is of constant
rank 2n − r, each point in TQ has an open neighbourhood
U in TQ such that L(U) is a smooth (2n − r)-dimensional
submanifold of T ∗Q defined by equations of that form, the
Φi being smooth functions defined on some open subset V

of T ∗Q containing L(U).
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Primary constraints (2)
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rank 2n − r, each point in TQ has an open neighbourhood
U in TQ such that L(U) is a smooth (2n − r)-dimensional
submanifold of T ∗Q defined by equations of that form, the
Φi being smooth functions defined on some open subset V

of T ∗Q containing L(U).
Globally, D0 may not be a “true” submanifold of T ∗Q: it may
be self-intersecting, with multiple points.
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Primary constraints (2)
These assumptions are valid locally: since L is of constant
rank 2n − r, each point in TQ has an open neighbourhood
U in TQ such that L(U) is a smooth (2n − r)-dimensional
submanifold of T ∗Q defined by equations of that form, the
Φi being smooth functions defined on some open subset V

of T ∗Q containing L(U).
Globally, D0 may not be a “true” submanifold of T ∗Q: it may
be self-intersecting, with multiple points.
The partial derivatives of H : TQ ⊕ T ∗Q → R are

∂H(q, q̇, p)

∂qi
= −

∂L(q, q̇)

∂qi
,

∂H(q, q̇, p)

∂q̇i
= pi −

∂L(q, q̇)

∂q̇i
,

∂H(q, q̇, p)

∂pi
= q̇i .
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Generalized Hamiltonian dynamics (1)
Let

ΓL =
{
(q, q̇, p) ∈ TQ ⊕ T ∗Q; (q, p) = L(q, q̇)

}

be the graph of the Legendre map. We see that

∂H(q, q̇, p)

∂q̇i
= 0 when (q, q̇, p) ∈ ΓL .
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Generalized Hamiltonian dynamics (1)
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ΓL =
{
(q, q̇, p) ∈ TQ ⊕ T ∗Q; (q, p) = L(q, q̇)

}

be the graph of the Legendre map. We see that

∂H(q, q̇, p)

∂q̇i
= 0 when (q, q̇, p) ∈ ΓL .

In other words, on the graph ΓL (which is a 2n-dimensional
submanifold of the 3n-dimensional manifold TQ ⊕ T ∗Q), the
Hamiltonian H does not depend on the variables q̇i.
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Generalized Hamiltonian dynamics (1)
Let

ΓL =
{
(q, q̇, p) ∈ TQ ⊕ T ∗Q; (q, p) = L(q, q̇)

}

be the graph of the Legendre map. We see that

∂H(q, q̇, p)

∂q̇i
= 0 when (q, q̇, p) ∈ ΓL .

In other words, on the graph ΓL (which is a 2n-dimensional
submanifold of the 3n-dimensional manifold TQ ⊕ T ∗Q), the
Hamiltonian H does not depend on the variables q̇i.

Dirac considers that there exists a smooth function Ĥ,
defined on an open subset of T ∗Q containing D0, such that

H(q, q̇, p) = Ĥ(q, p) when (q, q̇, p) ∈ ΓL .
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Generalized Hamiltonian dynamics (2)
The function Ĥ with these properties, when it exists, is not
unique: we may add to it any smooth function which
vanishes on the image D0 of the Legendre map.
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Generalized Hamiltonian dynamics (2)
The function Ĥ with these properties, when it exists, is not
unique: we may add to it any smooth function which
vanishes on the image D0 of the Legendre map.

For the existence of Ĥ, we may have to restrict the
Legendre map L to a suitable open subset of TQ, such that
for each point (q, p) ∈ D0, the intersection of that open
subset with L−1(q, p) is connected. Following Dirac we will
assume that functions with these properties do exist, and
we choose arbitrarily one of them.

Thirty years of bihamiltonian systems, Bȩdlewo, August 3–9, 2008 Dirac brackets and bihamiltonian systems – p. 11/46



Generalized Hamiltonian dynamics (2)
The function Ĥ with these properties, when it exists, is not
unique: we may add to it any smooth function which
vanishes on the image D0 of the Legendre map.

For the existence of Ĥ, we may have to restrict the
Legendre map L to a suitable open subset of TQ, such that
for each point (q, p) ∈ D0, the intersection of that open
subset with L−1(q, p) is connected. Following Dirac we will
assume that functions with these properties do exist, and
we choose arbitrarily one of them.

Instead of Ĥ and Φα, defined on T ∗Q, it is more convenient
to consider the functions, defined on TQ ⊕ T ∗Q,

H̃ = Ĥ ◦ πT ∗Q , Φ̃α = Φα ◦ πT ∗Q , 1 ≤ α ≤ r ,

πT ∗Q : TQ ⊕ T ∗Q → T ∗Q being the canonical submersion.
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Generalized Hamiltonian dynamics (3)
Both H and H̃ are functions defined on TQ ⊕ T ∗Q, which
are equal on the graph ΓL of L:

H(q, q̇, p) = Ĥ(q, p) = H̃(q, q̇, p) when (q, p) = L(q, q̇) .
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Generalized Hamiltonian dynamics (3)
Both H and H̃ are functions defined on TQ ⊕ T ∗Q, which
are equal on the graph ΓL of L:

H(q, q̇, p) = Ĥ(q, p) = H̃(q, q̇, p) when (q, p) = L(q, q̇) .

So for each (q, q̇, p) ∈ ΓL, dH(q, q̇, p) and dH̃(q, q̇, p) are
equal on the subspace of vectors tangent to ΓL. Moreover,

r⋂

α=1

ker dΦ̃α(q, q̇, p) ⊂ ker d(H − H̃)(q, q̇, p) .
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equal on the subspace of vectors tangent to ΓL. Moreover,

r⋂

α=1

ker dΦ̃α(q, q̇, p) ⊂ ker d(H − H̃)(q, q̇, p) .

The theory of Lagrange multipliers shows that, for
(q, q̇, p) ∈ ΓL,

dH(q, q̇, p) = dH̃(q, q̇, p) +
r∑

α=1

vαdΦ̃α(q, q̇, p) .
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Generalized Hamiltonian dynamics (4)
For each (q, q̇, p) ∈ ΓL, the family of Lagrange multipliers
(vα , 1 ≤ α ≤ r) depends on that point and of the time t, and
may not be unique.
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Generalized Hamiltonian dynamics (4)
For each (q, q̇, p) ∈ ΓL, the family of Lagrange multipliers
(vα , 1 ≤ α ≤ r) depends on that point and of the time t, and
may not be unique.
We have seen that, for (q, q̇, p) ∈ ΓL,

∂H(q, q̇, p)

∂qi
= −

∂L(q, q̇)

∂qi
,

∂H(q, q̇, p)

∂q̇i
= 0 ,

∂H(q, q̇, p)

∂pi
= q̇i .
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Generalized Hamiltonian dynamics (4)
For each (q, q̇, p) ∈ ΓL, the family of Lagrange multipliers
(vα , 1 ≤ α ≤ r) depends on that point and of the time t, and
may not be unique.
We have seen that, for (q, q̇, p) ∈ ΓL,

∂H(q, q̇, p)

∂qi
= −

∂L(q, q̇)

∂qi
,

∂H(q, q̇, p)

∂q̇i
= 0 ,

∂H(q, q̇, p)

∂pi
= q̇i .

Therefore we have, for (q, p) = L(q, q̇),

∂Ĥ(q, p)

∂qi
=

∂H̃(q, q̇, p)

∂qi
= −

∂L(q, q̇)

∂qi
−

r∑

α=1

vα(q, q̇, t)
∂Φ̃α(q, q̇, p)

∂qi
,

∂Ĥ(q, p)

∂pi
=

∂H̃(q, q̇, p)

∂pi
= q̇i −

r∑

α=1

vα(q, q̇, t)
∂Φ̃α(q, q̇, p)

∂pi
.
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Generalized Hamiltonian dynamics (5)
Since Φ̃α = Φα ◦ πT ∗Q, these equations become, for
(q, p) = L(q, q̇) ,

∂Ĥ(q, p)

∂qi
= −

∂L(q, q̇)

∂qi
−

r∑

α=1

vα(q, q̇, t)
∂Φα(q, p)

∂qi
,

∂Ĥ(q, p)

∂pi
= q̇i −

r∑

α=1

vα(q, q̇, t)
∂Φα(q, p)

∂pi
.

Thirty years of bihamiltonian systems, Bȩdlewo, August 3–9, 2008 Dirac brackets and bihamiltonian systems – p. 14/46



Generalized Hamiltonian dynamics (5)
Since Φ̃α = Φα ◦ πT ∗Q, these equations become, for
(q, p) = L(q, q̇) ,

∂Ĥ(q, p)

∂qi
= −

∂L(q, q̇)

∂qi
−

r∑

α=1

vα(q, q̇, t)
∂Φα(q, p)

∂qi
,

∂Ĥ(q, p)

∂pi
= q̇i −

r∑

α=1

vα(q, q̇, t)
∂Φα(q, p)

∂pi
.

From the equations of motion in Lagrange’s formalism

dqi

dt
= q̇i ,

d

dt

(
∂L(q, q̇)

∂q̇i

)
=

∂L(q, q̇)

∂qi

we deduce the equations of motion in the generalized
Hamilton’s formalism:
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Generalized Hamiltonian dynamics (6)




dqi

dt
=

∂Ĥ(q, p)

∂pi
+

r∑

α=1

vα(q, q̇, t)
∂Φα(q, p)

∂pi
,

dpi

dt
= −

∂Ĥ(q, p)

∂qi
+

r∑

α=1

vα(q, q̇, t)
∂Φα(q, p)

∂qi
.
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Generalized Hamiltonian dynamics (6)




dqi

dt
=

∂Ĥ(q, p)

∂pi
+

r∑

α=1

vα(q, q̇, t)
∂Φα(q, p)

∂pi
,

dpi

dt
= −

∂Ĥ(q, p)

∂qi
+

r∑

α=1

vα(q, q̇, t)
∂Φα(q, p)

∂qi
.

These equations, valid for (q, p) = L(q, q̇), follow from
Lagrange’s equations. Under Dirac’s assumptions (L of
constant rank, existence of the functions Ĥ and Φα), once
these (not uniquely determined) functions are chosen, for
each solution t 7→ q(t) of Lagrange’s equations,
t 7→

(
q(t), q̇(t), p(t)

)
is a solution of the above generalized

Hamilton’s equations (for a suitable choice of the vα(q, q̇, t),

which may not be unique). We have set q̇(t) =
dq(t)

dt
and

(
q(t), p(t)

)
= L

(
q(t), q̇(t)

)
.
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Secondary constraints (1)

The generalized Hamilton’s equations





dqi

dt
=

∂Ĥ(q, p)

∂pi
+

r∑

α=1

vα
∂Φα(q, p)

∂pi
,

dpi

dt
= −

∂Ĥ(q, p)

∂qi
+

r∑

α=1

vα
∂Φα(q, p)

∂qi

can be considered as differential equations on T ∗Q on ther
own, the vα being now considered as unknown functions of
the time t. From that point of view, they make an
under-determined system, since the vα can be chosen
arbitrarily.
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Secondary constraints (2)
Using the Poisson bracket on T ∗Q associated to its
canonical symplectic structure, these equations can be
written

dg

dt
= {Ĥ, g} +

r∑

α=1

vα{Φα, g} ,

where g is any smooth function on T ∗Q. Hamilton’s
generalized equations in local coordinates are obtained
when g is one of the local coordinate functions qi or pi.
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Secondary constraints (2)
Using the Poisson bracket on T ∗Q associated to its
canonical symplectic structure, these equations can be
written

dg

dt
= {Ĥ, g} +

r∑

α=1

vα{Φα, g} ,

where g is any smooth function on T ∗Q. Hamilton’s
generalized equations in local coordinates are obtained
when g is one of the local coordinate functions qi or pi.
To be an image, by the Legendre map L, of a solution of
Lagrange’s equations, a solution t 7→

(
q(t), p(t)

)
of the

generalized Hamilton’s equations must lie in D0 = L(TQ).
i.e., must satisfy

Φα
(
q(t), p(t)

)
= 0 for all t , 1 ≤ α ≤ r .
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Secondary constraints (3)
That necessary condition is satisfied if the starting point(
q(t0), p(t0)

)
of that solution is in D0 and if the following

compatibility conditions are satisfied:

dΦβ
dt

= {Ĥ,Φβ} +
r∑

α=1

vα{Φα,Φβ} = 0 , 1 ≤ β ≤ r .

When explicited, these equations may give rise to:
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Secondary constraints (3)
That necessary condition is satisfied if the starting point(
q(t0), p(t0)

)
of that solution is in D0 and if the following

compatibility conditions are satisfied:

dΦβ
dt

= {Ĥ,Φβ} +
r∑

α=1

vα{Φα,Φβ} = 0 , 1 ≤ β ≤ r .

When explicited, these equations may give rise to:
equalities satified if Φα = 0 for 1 ≤ α ≤ r;
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Secondary constraints (3)
That necessary condition is satisfied if the starting point(
q(t0), p(t0)

)
of that solution is in D0 and if the following

compatibility conditions are satisfied:

dΦβ
dt

= {Ĥ,Φβ} +
r∑

α=1

vα{Φα,Φβ} = 0 , 1 ≤ β ≤ r .

When explicited, these equations may give rise to:
equalities satified if Φα = 0 for 1 ≤ α ≤ r;
impossible equalities such as 1 = 0;

Thirty years of bihamiltonian systems, Bȩdlewo, August 3–9, 2008 Dirac brackets and bihamiltonian systems – p. 18/46



Secondary constraints (3)
That necessary condition is satisfied if the starting point(
q(t0), p(t0)

)
of that solution is in D0 and if the following

compatibility conditions are satisfied:

dΦβ
dt

= {Ĥ,Φβ} +
r∑

α=1

vα{Φα,Φβ} = 0 , 1 ≤ β ≤ r .

When explicited, these equations may give rise to:
equalities satified if Φα = 0 for 1 ≤ α ≤ r;
impossible equalities such as 1 = 0;
equations which restrict the generality of the vα;
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Secondary constraints (3)
That necessary condition is satisfied if the starting point(
q(t0), p(t0)

)
of that solution is in D0 and if the following

compatibility conditions are satisfied:

dΦβ
dt

= {Ĥ,Φβ} +
r∑

α=1

vα{Φα,Φβ} = 0 , 1 ≤ β ≤ r .

When explicited, these equations may give rise to:
equalities satified if Φα = 0 for 1 ≤ α ≤ r;
impossible equalities such as 1 = 0;
equations which restrict the generality of the vα;
new equalities, called secondary constraints

χk(p, q) = 0 , k = 1 , 2 , . . . .

the χk being smooth functions on open subsets of T ∗Q.
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Dirac’s algorithm (1)

Unless impossible equalities occur (which means that the
Lagrangian used is inconsistent), secondary constraints
lead to new compatibility conditions

dχk

dt
= {Ĥ, χk} +

r∑

α=1

vα{Φα, χk} = 0 , k = 1 , 2 , . . . ,

which again may give rise to satisfied equalities, impossible
equalities, new relations involving the vα and new
secondary constraints.
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Dirac’s algorithm (1)

Unless impossible equalities occur (which means that the
Lagrangian used is inconsistent), secondary constraints
lead to new compatibility conditions

dχk

dt
= {Ĥ, χk} +

r∑

α=1

vα{Φα, χk} = 0 , k = 1 , 2 , . . . ,

which again may give rise to satisfied equalities, impossible
equalities, new relations involving the vα and new
secondary constraints.
The process, called Dirac’s algorithm, is pursued until no
new constraints appear.
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Dirac’s algorithm (2)

Assuming that no impossible equation occured, we are left
with a total of s secondary constraints

χk(q, p) = 0 , 1 ≤ k ≤ s ,

and, eventually, u nonhomogeneous linear equations, with
functions on open subsets of T ∗Q as coefficients, which
must be satisfied by the vα:

r∑

α=1

Al
α(q, p)vα = Bl(q, p) , 1 ≤ l ≤ u .
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Final constraint submanifold (1)
Finally we have a total of r + s constraints

Φα(q, p) = 0 , 1 ≤ α ≤ r , χk(q, p) = 0 , 1 ≤ k ≤ s ,

which define a subset Df of T ∗Q, contained in the image D0

of the Legendre map L. The functions Φα and χk are called
the primary and secondary constraint functions. We will
assume that their differentials are linearly independent at
each point in Df . So Df is a smooth
(2n− r − s)-dimensional submanifold of T ∗Q, called the final
constraint submanifold, contained in the initial constraint
submanifold D0.

Thirty years of bihamiltonian systems, Bȩdlewo, August 3–9, 2008 Dirac brackets and bihamiltonian systems – p. 21/46



Final constraint submanifold (1)
Finally we have a total of r + s constraints

Φα(q, p) = 0 , 1 ≤ α ≤ r , χk(q, p) = 0 , 1 ≤ k ≤ s ,

which define a subset Df of T ∗Q, contained in the image D0

of the Legendre map L. The functions Φα and χk are called
the primary and secondary constraint functions. We will
assume that their differentials are linearly independent at
each point in Df . So Df is a smooth
(2n− r − s)-dimensional submanifold of T ∗Q, called the final
constraint submanifold, contained in the initial constraint
submanifold D0.
Only the primary constraint functions Φα appear in the
generalized Hamilton equations

dg

dt
= {Ĥ, g}+

r∑

α=1

vα{Φα, g} , g any smooth function on T ∗Q .
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Final constraint submanifold (2)
Geometrical Interpretation Let X bH

and XΦα
be the

Hamiltonian vector fields on T ∗Q with Hamiltonians Ĥ and
Φα, (1 ≤ α ≤ r), respectively.
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Final constraint submanifold (2)
Geometrical Interpretation Let X bH

and XΦα
be the

Hamiltonian vector fields on T ∗Q with Hamiltonians Ĥ and
Φα, (1 ≤ α ≤ r), respectively.
Generally speaking, X bH

is not tangent to the initial
constraint submanifold D0. Dirac’s algorithm solves the
following problem:
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Final constraint submanifold (2)
Geometrical Interpretation Let X bH

and XΦα
be the

Hamiltonian vector fields on T ∗Q with Hamiltonians Ĥ and
Φα, (1 ≤ α ≤ r), respectively.
Generally speaking, X bH

is not tangent to the initial
constraint submanifold D0. Dirac’s algorithm solves the
following problem:
Find a submanifold Df ⊂ D0 such that for each point z of
that submanifold, there exist coefficients vα for which the
vector

X bH
(z) +

r∑

α=1

vαXΦα
(z)

is tangent to Df at z.
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Final constraint submanifold (3)
In other words, for each z ∈ Df , the intersection of TzDf

with the affine subspace of Tz(T
∗Q) made by the vectors

X bH
(z) +

∑r
α=1 vαXΦα

(z), for all reals vα, must be not empty.
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Final constraint submanifold (3)
In other words, for each z ∈ Df , the intersection of TzDf

with the affine subspace of Tz(T
∗Q) made by the vectors

X bH
(z) +

∑r
α=1 vαXΦα

(z), for all reals vα, must be not empty.

That intersection is not always reduced to only one vector:
it may be an affine subspace of TzDf .

Thirty years of bihamiltonian systems, Bȩdlewo, August 3–9, 2008 Dirac brackets and bihamiltonian systems – p. 23/46



Final constraint submanifold (3)
In other words, for each z ∈ Df , the intersection of TzDf

with the affine subspace of Tz(T
∗Q) made by the vectors

X bH
(z) +

∑r
α=1 vαXΦα

(z), for all reals vα, must be not empty.

That intersection is not always reduced to only one vector:
it may be an affine subspace of TzDf .

For example, if one of the vectors XΦα
(z) is tangent to Df ,

the corresponding coefficient vα can be any real number
and that intersection contains an affine straight line parallel
to that vector.
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Final constraint submanifold (3)
In other words, for each z ∈ Df , the intersection of TzDf

with the affine subspace of Tz(T
∗Q) made by the vectors

X bH
(z) +

∑r
α=1 vαXΦα

(z), for all reals vα, must be not empty.

That intersection is not always reduced to only one vector:
it may be an affine subspace of TzDf .

For example, if one of the vectors XΦα
(z) is tangent to Df ,

the corresponding coefficient vα can be any real number
and that intersection contains an affine straight line parallel
to that vector.
These considerations lead Dirac to distnguish two kinds of
constraints: first class constraints and second class
constraints.
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Final constraint submanifold (3)
In other words, for each z ∈ Df , the intersection of TzDf

with the affine subspace of Tz(T
∗Q) made by the vectors

X bH
(z) +

∑r
α=1 vαXΦα

(z), for all reals vα, must be not empty.

That intersection is not always reduced to only one vector:
it may be an affine subspace of TzDf .

For example, if one of the vectors XΦα
(z) is tangent to Df ,

the corresponding coefficient vα can be any real number
and that intersection contains an affine straight line parallel
to that vector.
These considerations lead Dirac to distnguish two kinds of
constraints: first class constraints and second class
constraints.
The distinction between first class and second class
constraints is independent of the distinction between
primary and secondary constraints.
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First and second class constraints (1)

Definition A smooth function on T ∗Q is said to be first
class if its Poisson bracket with the constraint functions
(primary as well as secondary) Φα and χk vanishes on Df ,
1 ≤ α ≤ r, 1 ≤ k ≤ s.
A function which is not first class is said to be second class.
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First and second class constraints (1)

Definition A smooth function on T ∗Q is said to be first
class if its Poisson bracket with the constraint functions
(primary as well as secondary) Φα and χk vanishes on Df ,
1 ≤ α ≤ r, 1 ≤ k ≤ s.
A function which is not first class is said to be second class.
These definitions apply to the constraint functions Φα and
χk themselves. So we distinguish between first class and
second class constraint functions.

Thirty years of bihamiltonian systems, Bȩdlewo, August 3–9, 2008 Dirac brackets and bihamiltonian systems – p. 24/46



First and second class constraints (1)

Definition A smooth function on T ∗Q is said to be first
class if its Poisson bracket with the constraint functions
(primary as well as secondary) Φα and χk vanishes on Df ,
1 ≤ α ≤ r, 1 ≤ k ≤ s.
A function which is not first class is said to be second class.
These definitions apply to the constraint functions Φα and
χk themselves. So we distinguish between first class and
second class constraint functions.
The Poisson bracket of two first class functions is first class
(Jacobi identity). Any linear combination of first class
functions, with functions defined on T ∗Q as coefficients, is
first class.
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First and second class constraints (1)

Definition A smooth function on T ∗Q is said to be first
class if its Poisson bracket with the constraint functions
(primary as well as secondary) Φα and χk vanishes on Df ,
1 ≤ α ≤ r, 1 ≤ k ≤ s.
A function which is not first class is said to be second class.
These definitions apply to the constraint functions Φα and
χk themselves. So we distinguish between first class and
second class constraint functions.
The Poisson bracket of two first class functions is first class
(Jacobi identity). Any linear combination of first class
functions, with functions defined on T ∗Q as coefficients, is
first class.
Geometrical interpretation . A smooth function Ψ is
first class if and only if the Hamiltonian vector field XΨ is
everywhere tangent to the final constraint submanifold Df
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First and second class constraints (2)
When the constraint function Ψ is chosen among the Φα’s
and χk’s obtained with Dirac’s algorithm, the correponding
Hamiltonan vector field Xψ may be tangent to the final
constraint submanifold Df at some points, but not
everywhere. For that reason, instead of the original
constraint functions Φα and χk, Dirac uses a set of r + s

new constraint functions Ψγ, 1 ≤ γ ≤ r + s, obtained from
the original ones by a linear transformation whose
coefficients are functions on T ∗Q, the determinant of that
linear transformation being nowhere zero. The submanifold
Df ⊂ T ∗Q can now be defined by the equations

Θγ(q, p) = 0 , 1 ≤ γ ≤ r + s ,

instead of Ψα(q, p) = 0 and χk(q, p) = 0, 1 ≤ α ≤ r, 1 ≤ k ≤ s.
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Poisson brackets of second class constraints

Dirac chooses the transformation which yields the Θγ ’s as
linear combinations of the Φα’s and the χk’s, in such a way
that the number of first class Θγ ’s is the largest possible. By
reordering, we may assume that the Θγ are:

first class for 1 ≤ γ ≤ k , second class for k+1 ≤ γ ≤ r+s .
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Poisson brackets of second class constraints

Dirac chooses the transformation which yields the Θγ ’s as
linear combinations of the Φα’s and the χk’s, in such a way
that the number of first class Θγ ’s is the largest possible. By
reordering, we may assume that the Θγ are:

first class for 1 ≤ γ ≤ k , second class for k+1 ≤ γ ≤ r+s .

Dirac proves that the matrix whose coefficients are the
Poisson brackets of pairs of second class Θγ ’s,

(
{Θα,Θβ}

)
, k + 1 ≤ α, β ≤ r + s

is invertible at each point of Df . The Poisson braket being
skew-symmetric, it implies that the number r + s − k of
second class constraints is even. We will set r + s − k = 2p.
This result has the following symplectic explanation.
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Symplectic explanation (1)

For each point z ∈ Df the tangent space TzDf is the
annihilator of the vector subspace of T ∗

z (T ∗Q) generated by
the dΘγ(z), 1 ≤ γ ≤ r + s. Equipped with ω(z), Tz(T

∗Q) is a
symplectic vector space. The symplectic orthogonal
orth(TzDf ) of its vector subspace TzDf is the vector
subspace of Tz(T

∗Q) generated by the Hamiltonian vectors
XΘγ

(z), 1 ≤ γ ≤ r + s.
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Symplectic explanation (1)

For each point z ∈ Df the tangent space TzDf is the
annihilator of the vector subspace of T ∗

z (T ∗Q) generated by
the dΘγ(z), 1 ≤ γ ≤ r + s. Equipped with ω(z), Tz(T

∗Q) is a
symplectic vector space. The symplectic orthogonal
orth(TzDf ) of its vector subspace TzDf is the vector
subspace of Tz(T

∗Q) generated by the Hamiltonian vectors
XΘγ

(z), 1 ≤ γ ≤ r + s.

When Θγ is first class, XΘγ
(z) ∈ TzDf ∩ orth(TzDf ). This

subspace is the common kernel of the 2-forms induced by
ω(z) both on the vector subspace TzDf and on its
symplectic orthogonal orth(TzDf ).
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Symplectic explanation (1)

For each point z ∈ Df the tangent space TzDf is the
annihilator of the vector subspace of T ∗

z (T ∗Q) generated by
the dΘγ(z), 1 ≤ γ ≤ r + s. Equipped with ω(z), Tz(T

∗Q) is a
symplectic vector space. The symplectic orthogonal
orth(TzDf ) of its vector subspace TzDf is the vector
subspace of Tz(T

∗Q) generated by the Hamiltonian vectors
XΘγ

(z), 1 ≤ γ ≤ r + s.

When Θγ is first class, XΘγ
(z) ∈ TzDf ∩ orth(TzDf ). This

subspace is the common kernel of the 2-forms induced by
ω(z) both on the vector subspace TzDf and on its
symplectic orthogonal orth(TzDf ).

It seems that Dirac tacitly assumes that the 2-form induced
on Df by ω is of constant rank. I tried (without succes) to
prove that the constancy of rank followed from Dirac’s
algorithm.
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Symplectic explanation (2)
Under this assumption, we can indeed split (at least locally)
the constraint functions Θγ into first and second class. At
each point z ∈ Df , the Hamiltonian vectors XΘγ

(z), with Θγ

second class, form a basis of a symplectic vector subspace
of Tz(T

∗Q). That explains why the matrix of Poisson
brackets of secondary constraint functions is invertible at
each point z ∈ Df .
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Symplectic explanation (2)
Under this assumption, we can indeed split (at least locally)
the constraint functions Θγ into first and second class. At
each point z ∈ Df , the Hamiltonian vectors XΘγ

(z), with Θγ

second class, form a basis of a symplectic vector subspace
of Tz(T

∗Q). That explains why the matrix of Poisson
brackets of secondary constraint functions is invertible at
each point z ∈ Df .

In what follows we will denote by Θγ (1 ≤ γ ≤ k) the first
class constraint functions and by Ψδ = Θk+δ (1 ≤ δ ≤ 2p) the
second class constraint functions.
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The Dirac bracket (1)

Dirac introduces, for functions defined on T ∗Q, a modified
Poisson bracket (we will call it the Dirac bracket and denote
it by { , }D) with the following properties:
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The Dirac bracket (1)

Dirac introduces, for functions defined on T ∗Q, a modified
Poisson bracket (we will call it the Dirac bracket and denote
it by { , }D) with the following properties:

that modified Poisson bracket is defined on the open
neighbourhood W of Df in T ∗Q on which the matrix with
coefficients {Ψγ ,Ψδ} is invertible);
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The Dirac bracket (1)

Dirac introduces, for functions defined on T ∗Q, a modified
Poisson bracket (we will call it the Dirac bracket and denote
it by { , }D) with the following properties:

that modified Poisson bracket is defined on the open
neighbourhood W of Df in T ∗Q on which the matrix with
coefficients {Ψγ ,Ψδ} is invertible);

the Dirac bracket {Ψγ , g}D of a second class contraint
function Ψγ (1 ≤ γ ≤ 2p) with any smooth function g

vanishes identically on W ;
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The Dirac bracket (1)

Dirac introduces, for functions defined on T ∗Q, a modified
Poisson bracket (we will call it the Dirac bracket and denote
it by { , }D) with the following properties:

that modified Poisson bracket is defined on the open
neighbourhood W of Df in T ∗Q on which the matrix with
coefficients {Ψγ ,Ψδ} is invertible);

the Dirac bracket {Ψγ , g}D of a second class contraint
function Ψγ (1 ≤ γ ≤ 2p) with any smooth function g

vanishes identically on W ;
When f and g are two smooth functions on T ∗Q and

z ∈ W a point at which {f,Ψγ} = 0 and {g,Ψγ} = 0,
1 ≤ γ ≤ 2p, then

{f, g}D(z) = {f, g}(z) .
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The Dirac bracket (2)
We have seen that the matrix with coefficients

Mαβ = {Ψα,Ψβ} , 1 ≤ α, β ≤ 2p

is invertible.
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The Dirac bracket (2)
We have seen that the matrix with coefficients

Mαβ = {Ψα,Ψβ} , 1 ≤ α, β ≤ 2p

is invertible. Let Cαβ be the coefficients of its inverse. They
are smooth functions on W such that

2p∑

β=1

MαβCβγ = δαγ .
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The Dirac bracket (2)
We have seen that the matrix with coefficients

Mαβ = {Ψα,Ψβ} , 1 ≤ α, β ≤ 2p

is invertible. Let Cαβ be the coefficients of its inverse. They
are smooth functions on W such that

2p∑

β=1

MαβCβγ = δαγ .

The Dirac bracket of two smooth functions f and g is
defined as

{f, g}D = {f, g} −

2p∑

α=1

2p∑

β=1

{f,Ψα}Cαβ{Ψβ , g} .
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The Dirac bracket (3)
In [1] Dirac proves, by direct calculations, that his bracket
has all the properties of a Poisson bracket (skew-symmetry,
Leibniz identity and Jacobi identity).
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The Dirac bracket (3)
In [1] Dirac proves, by direct calculations, that his bracket
has all the properties of a Poisson bracket (skew-symmetry,
Leibniz identity and Jacobi identity).
On the final constraint submanifold Df , the constraint
functions are equal to 0, therefore the generalized Hamilton
equations can be written, g being any smooth function

dg

dt
= {Ĥ +

r∑

α=1

vαΦα, g} = {HT , g} .
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The Dirac bracket (3)
In [1] Dirac proves, by direct calculations, that his bracket
has all the properties of a Poisson bracket (skew-symmetry,
Leibniz identity and Jacobi identity).
On the final constraint submanifold Df , the constraint
functions are equal to 0, therefore the generalized Hamilton
equations can be written, g being any smooth function

dg

dt
= {Ĥ +

r∑

α=1

vαΦα, g} = {HT , g} .

The function HT = Ĥ +
∑r

α=1 vαΦα is first class, so the
generalized Hamilton equation can be written with the Dirac
bracket, as well as with the ordinary bracket

dg

dt
= {HT , g}D .
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The Poisson-Dirac bivector (1)

The usual Poisson bracket is built with the bivector field Λ

on T ∗Q, given in Darboux coordibates by Λ =
n∑

i=1

∂

∂pi
∧

∂

∂qi
.

Let Λ♯ : T ∗Q → TQ be the bundle morphism determined by
Λ. For smooth functions f and g,

{f, g} = Λ(df, dg) = i(Xf )dg , with Xf = Λ♯(df) .
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The Poisson-Dirac bivector (1)

The usual Poisson bracket is built with the bivector field Λ

on T ∗Q, given in Darboux coordibates by Λ =
n∑

i=1

∂

∂pi
∧

∂

∂qi
.

Let Λ♯ : T ∗Q → TQ be the bundle morphism determined by
Λ. For smooth functions f and g,

{f, g} = Λ(df, dg) = i(Xf )dg , with Xf = Λ♯(df) .

Let ΛD be the bivector field corresponding to { , }D.
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The Poisson-Dirac bivector (1)

The usual Poisson bracket is built with the bivector field Λ

on T ∗Q, given in Darboux coordibates by Λ =
n∑

i=1

∂

∂pi
∧

∂

∂qi
.

Let Λ♯ : T ∗Q → TQ be the bundle morphism determined by
Λ. For smooth functions f and g,

{f, g} = Λ(df, dg) = i(Xf )dg , with Xf = Λ♯(df) .

Let ΛD be the bivector field corresponding to { , }D.
Let F be the rank 2p vector subbundle of T (T ∗Q) generated
by the Hamiltonian vector fields XΨα

, 1 ≤ α ≤ 2p, and
G = orthF be its symplectic orthogonal. Both F and G are
symplectic vector subbundles and

T (T ∗Q) = F ⊕ orthF = F ⊕ G .
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The Poisson-Dirac bivector (2)
By duality T ∗(T ∗Q) = F 0 ⊕ G0, where F 0 and G0 are the
annihilators of F and G, respectively. Let
πF 0 : T ∗(T ∗Q) → F 0 and πG0 : T ∗(T ∗Q) → G0 be the
projections with kernels G0 and F 0, respectively.
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The Poisson-Dirac bivector (2)
By duality T ∗(T ∗Q) = F 0 ⊕ G0, where F 0 and G0 are the
annihilators of F and G, respectively. Let
πF 0 : T ∗(T ∗Q) → F 0 and πG0 : T ∗(T ∗Q) → G0 be the
projections with kernels G0 and F 0, respectively.
We have, for z ∈ T ∗Q, η and ζ ∈ T ∗(T ∗Q),

ΛD(η, ζ) = Λ
(
πF 0(η), πF 0(ζ)

)
.

Thirty years of bihamiltonian systems, Bȩdlewo, August 3–9, 2008 Dirac brackets and bihamiltonian systems – p. 33/46



The Poisson-Dirac bivector (2)
By duality T ∗(T ∗Q) = F 0 ⊕ G0, where F 0 and G0 are the
annihilators of F and G, respectively. Let
πF 0 : T ∗(T ∗Q) → F 0 and πG0 : T ∗(T ∗Q) → G0 be the
projections with kernels G0 and F 0, respectively.
We have, for z ∈ T ∗Q, η and ζ ∈ T ∗(T ∗Q),

ΛD(η, ζ) = Λ
(
πF 0(η), πF 0(ζ)

)
.

Therefore
Λ♯D = tπF 0 ◦ Λ♯ ◦ πF 0 ,

where the transpose tπF 0 : G → T (T ∗Q) of
πF 0 : T ∗(T ∗Q) → F 0 is the canonical injection (F 0 being
identified with the dual of G)
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The Poisson-Dirac bivector (3)
Dirac has proven that ΛD is a Poisson bivector. That
property is a special case of the following proposition.
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The Poisson-Dirac bivector (3)
Dirac has proven that ΛD is a Poisson bivector. That
property is a special case of the following proposition.

Proposition Let (M,ω) be a symplectic manifold, F a
symplectic vector subbundle of TM and G = orthF its
symplectic orthogonal. Let

Λ♯D = tπF 0 ◦ Λ♯ ◦ πF 0 ,

where Λ is the Poisson bivector associated to ω, πF 0

defined as above. Then ΛD is a Poisson bivector field if and
only if G is completely integrable.
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The Poisson-Dirac bivector (3)
Dirac has proven that ΛD is a Poisson bivector. That
property is a special case of the following proposition.

Proposition Let (M,ω) be a symplectic manifold, F a
symplectic vector subbundle of TM and G = orthF its
symplectic orthogonal. Let

Λ♯D = tπF 0 ◦ Λ♯ ◦ πF 0 ,

where Λ is the Poisson bivector associated to ω, πF 0

defined as above. Then ΛD is a Poisson bivector field if and
only if G is completely integrable.

Proof If (M,ΛD) is a Poisson manifold, G is the vector
subbundle tangent to its symplectic leaves. So it is
completely integrable.
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The Poisson-Dirac bivector (3)
Dirac has proven that ΛD is a Poisson bivector. That
property is a special case of the following proposition.

Proposition Let (M,ω) be a symplectic manifold, F a
symplectic vector subbundle of TM and G = orthF its
symplectic orthogonal. Let

Λ♯D = tπF 0 ◦ Λ♯ ◦ πF 0 ,

where Λ is the Poisson bivector associated to ω, πF 0

defined as above. Then ΛD is a Poisson bivector field if and
only if G is completely integrable.

Proof If (M,ΛD) is a Poisson manifold, G is the vector
subbundle tangent to its symplectic leaves. So it is
completely integrable.
Conversely, assume that G is completely integrable.
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The Poisson-Dirac bivector (4)
We recall that if η and ζ are two 1-forms on M ,

ΛD(η, ζ) = Λ
(
πF 0(η), πF 0(ζ)

)
.

Let τM : TM → M be the canonical projection of the
tangent bundle. Then (G, τM |G,M) is a Lie algebroid (with
the bracket of vector fields, restricted to sections of τM |G as
composition law). Therefore the total space G∗ of its dual
bundle has a linear Poisson structure. But we know that G∗

can be isentified with F 0, so F 0 has a linear Poisson
structure. It means that the bracket (calculated for the
Poisson structure Λ) of two 1-forms η and ζ on M which are
sections of F 0 is again a section of F 0. The above formula
for ΛD(η, ζ) shows that ΛD is a Poisson bivector field.
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Compatibility of Λ and ΛD

Under the assumptions of the above Proposition, we have
two Poisson structures Λ and ΛD on M . Generally
speaking, these two Poisson structures are not compatible.
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Compatibility of Λ and ΛD

Under the assumptions of the above Proposition, we have
two Poisson structures Λ and ΛD on M . Generally
speaking, these two Poisson structures are not compatible.

We have
Λ♯ − Λ♯D = tπG0 ◦ Λ♯ ◦ πG0 ,

and the same proposition shows that Λ − ΛD is a Poisson
bivector if and only if F is completely integrable.
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Compatibility of Λ and ΛD

Under the assumptions of the above Proposition, we have
two Poisson structures Λ and ΛD on M . Generally
speaking, these two Poisson structures are not compatible.

We have
Λ♯ − Λ♯D = tπG0 ◦ Λ♯ ◦ πG0 ,

and the same proposition shows that Λ − ΛD is a Poisson
bivector if and only if F is completely integrable.

When both G and F are completely integrable the manifold
M is locally a product of two symplectic manifolds.
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Example (1)

On TR
n, with coordinates (qi, q̇i), 1 ≤ i ≤ n, we take as

Lagrangian

L0(q, q̇) =
m

2

n∑

i=1

(q̇i)2 − V (q) ,

and we impose the constraint

F (q) = constant .

We add one dimension to the configuration manifold
(coordinate λ). So we have two more dimensions on
T (Rn × R), with coordinates (λ, λ̇). Our new Lagrangian is

L(q, λ, q̇, λ̇) = L0(q, q̇) + λ̇F (q) =
m

2

n∑

i=1

(q̇i)2 − V (q) + λ̇F (q) .
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Example (2)
The Lagrange equations





d

dt
(mq̇i) +

∂V (q)

∂qi
− λ̇

∂F (q)

∂qi
= 0 ,

d

dt
F (q) = 0 ,

are the correct equations of motion of a heavy point
constrained, by an ideal contraint, on a surface F (q) =
constant, that constant depending on the initial condition.
The Lagrange multiplier is λ̇.
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Example (2)
The Lagrange equations





d

dt
(mq̇i) +

∂V (q)

∂qi
− λ̇

∂F (q)

∂qi
= 0 ,

d

dt
F (q) = 0 ,

are the correct equations of motion of a heavy point
constrained, by an ideal contraint, on a surface F (q) =
constant, that constant depending on the initial condition.
The Lagrange multiplier is λ̇.
The Legendre map is

L : (q, λ, q̇, λ̇) 7→ (q, λ, p, pλ) , with

pi = mq̇i , pλ = F (q) .
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Example (3)
The Hamiltonian H(q, λ, q̇, λ̇, p, pλ), defined on
TR

n+1 ⊕ T ∗
R
n+1, is

H(q, λ, q̇, λ̇, p, pλ) =

n∑

i=1

(
pi −

m

2
q̇i

)
q̇i + λ̇

(
pλ − F (q)

)
+ V (q) .
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Example (3)
The Hamiltonian H(q, λ, q̇, λ̇, p, pλ), defined on
TR

n+1 ⊕ T ∗
R
n+1, is

H(q, λ, q̇, λ̇, p, pλ) =

n∑

i=1

(
pi −

m

2
q̇i

)
q̇i + λ̇

(
pλ − F (q)

)
+ V (q) .

As (non unique) Hamiltonian defined on T ∗
R
n+1, we choose

Ĥ(q, λ, p, pλ) =
1

2m

n∑

i=1

p2
i + V (q) .
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Example (3)
The Hamiltonian H(q, λ, q̇, λ̇, p, pλ), defined on
TR

n+1 ⊕ T ∗
R
n+1, is

H(q, λ, q̇, λ̇, p, pλ) =

n∑

i=1

(
pi −

m

2
q̇i

)
q̇i + λ̇

(
pλ − F (q)

)
+ V (q) .

As (non unique) Hamiltonian defined on T ∗
R
n+1, we choose

Ĥ(q, λ, p, pλ) =
1

2m

n∑

i=1

p2
i + V (q) .

We have only one primary constraint

Φ(q, λ, p, pλ) = F (q) − pλ = 0 ,

with constraint function Φ = F (q) − pλ.
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Example (4)
The generalized Hamilton’s equation for the time derivative
of any smooth function g is

dg

dt
= {Ĥ, g} + v{Φ, g} .
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Example (4)
The generalized Hamilton’s equation for the time derivative
of any smooth function g is

dg

dt
= {Ĥ, g} + v{Φ, g} .

The compatibility condition
dΦ

dt
= 0 yields

1

m
χ(q, λ, p, pλ) =

1

m

n∑

i=1

pi
∂F (q)

∂qi
= 0 .
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Example (4)
The generalized Hamilton’s equation for the time derivative
of any smooth function g is

dg

dt
= {Ĥ, g} + v{Φ, g} .

The compatibility condition
dΦ

dt
= 0 yields

1

m
χ(q, λ, p, pλ) =

1

m

n∑

i=1

pi
∂F (q)

∂qi
= 0 .

We obtain a secondary constraint χ = 0, with constraint
function

χ =
n∑

i=1

pi
∂F (q)

∂qi
.
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Example (5)
So we get another compatibility condition

dχ

dt
= 0, which

leads to

n∑

i=1

(
∂F (q)

∂qi

)2

v =

n∑

i=1

n∑

j=1

pipj
∂2F (q)

∂qi∂qj
−

n∑

i=1

∂F (q)

∂qi
∂V (q)

∂qi
.
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Example (5)
So we get another compatibility condition

dχ

dt
= 0, which

leads to

n∑

i=1

(
∂F (q)

∂qi

)2

v =

n∑

i=1

n∑

j=1

pipj
∂2F (q)

∂qi∂qj
−

n∑

i=1

∂F (q)

∂qi
∂V (q)

∂qi
.

This equality is not a new compatibility condition; it is a
relation which determines v as a function of (q, λ, p, pλ). We
see that in fact v does not depend on λ nor on pλ.
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Example (5)
So we get another compatibility condition

dχ

dt
= 0, which

leads to

n∑

i=1

(
∂F (q)

∂qi

)2

v =

n∑

i=1

n∑

j=1

pipj
∂2F (q)

∂qi∂qj
−

n∑

i=1

∂F (q)

∂qi
∂V (q)

∂qi
.

This equality is not a new compatibility condition; it is a
relation which determines v as a function of (q, λ, p, pλ). We
see that in fact v does not depend on λ nor on pλ.
So we have a total of two constraint functions: Φ and χ, with

{Φ, χ} = −
n∑

i=1

(
∂F (q)

∂qi

)2

.

The constraints Φ = 0 and χ = 0 are second class.
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Example (6)
The generalized Hamilton equations for the coordinates
functions are





dqi

dt
=

pi

m
,

dpi

dt
= −

∂V (q)

∂qi
− v(q, p)

∂F (q)

∂qi
,





dλ

dt
= −v(q, p) ,

dpλ

dt
= 0 .
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Example (6)
The generalized Hamilton equations for the coordinates
functions are





dqi

dt
=

pi

m
,

dpi

dt
= −

∂V (q)

∂qi
− v(q, p)

∂F (q)

∂qi
,





dλ

dt
= −v(q, p) ,

dpλ

dt
= 0 .

Remark Instead of L(q, λ, q̇, λ̇) = L0(q, q̇) + λ̇F (q), we
may use as Lagrangian

L(q, λ, q̇, λ̇) = L0(q, q̇) + λ
(
F (q) − C

)
,

where C is a constant. We obtain the same equations of
motion on the constraint manifold F (q) = C, and a similar
generalized Hamiltonian formalism, with three constraints
(one first class and two second class).
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Example (7)
The Dirac brackets of the coordinates functions are

{qi, qj}D = 0 , {qi, λ}D = −
1

{Φ, χ}

∂F

∂qi
,

{qi, pj}D = −δij −
1

{Φ, χ}

∂F

∂qi
∂F

∂qj
, {qi, pλ}D = 0 ,

{pi, λ}D =
1

{Φ, χ}

n∑

k=1

pk
∂2F

∂qk∂qi
,

{pi, pj}D =
1

{Φ, χ}

n∑

k=1

pk

(
∂F

∂qj
∂2F

∂qk∂qi
−

∂F

∂qi
∂2F

∂qk∂qj

)
,

{pi, pλ}D = 0 , {pλ, λ} = 1 .
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Thanks

I thank the organizers of the conference Thirty years of
bihamiltonian systems, Professor Maciej Blaszak and
Professor Andriy Panasyuk, for giving me the opportunity to
present this talk and to participate in that meeting.

And I thank the persons who had the kindness and
patience for listening to my talk.
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Thirty years of bihamiltonian systems, Bȩdlewo, August 3–9, 2008 Dirac brackets and bihamiltonian systems – p. 46/46


	hypertarget {sommaire}{Summary (1)}
	hyperlink {sommaire}{Summary (2)}
	hyperlink {sommaire}{Introduction}
	hyperlink {sommaire}{Introduction}
	hyperlink {sommaire}{Introduction}
	hyperlink {sommaire}{Introduction}

	hyperlink {sommaire}{Lagrangian formalism}
	hyperlink {sommaire}{Lagrangian formalism and Legendre map (1)}
	hyperlink {sommaire}{Lagrangian formalism and Legendre map (1)}

	hyperlink {sommaire}{Lagrangian formalism and Legendre map (2)}
	hyperlink {sommaire}{Lagrangian formalism and Legendre map (2)}

	hyperlink {sommaire}{Primary constraints (1)}
	hyperlink {sommaire}{Primary constraints (2)}
	hyperlink {sommaire}{Primary constraints (2)}
	hyperlink {sommaire}{Primary constraints (2)}

	hyperlink {sommaire}{Generalized Hamiltonian dynamics (1)}
	hyperlink {sommaire}{Generalized Hamiltonian dynamics (1)}
	hyperlink {sommaire}{Generalized Hamiltonian dynamics (1)}

	hyperlink {sommaire}{Generalized Hamiltonian dynamics (2)}
	hyperlink {sommaire}{Generalized Hamiltonian dynamics (2)}
	hyperlink {sommaire}{Generalized Hamiltonian dynamics (2)}

	hyperlink {sommaire}{Generalized Hamiltonian dynamics (3)}
	hyperlink {sommaire}{Generalized Hamiltonian dynamics (3)}
	hyperlink {sommaire}{Generalized Hamiltonian dynamics (3)}
	hyperlink {sommaire}{Generalized Hamiltonian dynamics (3)}

	hyperlink {sommaire}{Generalized Hamiltonian dynamics (4)}
	hyperlink {sommaire}{Generalized Hamiltonian dynamics (4)}
	hyperlink {sommaire}{Generalized Hamiltonian dynamics (4)}

	hyperlink {sommaire}{Generalized Hamiltonian dynamics (5)}
	hyperlink {sommaire}{Generalized Hamiltonian dynamics (5)}

	hyperlink {sommaire}{Generalized Hamiltonian dynamics (6)}
	hyperlink {sommaire}{Generalized Hamiltonian dynamics (6)}

	hyperlink {sommaire}{Secondary constraints (1)}
	hyperlink {sommaire}{Secondary constraints (2)}
	hyperlink {sommaire}{Secondary constraints (2)}

	hyperlink {sommaire}{Secondary constraints (3)}
	hyperlink {sommaire}{Secondary constraints (3)}
	hyperlink {sommaire}{Secondary constraints (3)}
	hyperlink {sommaire}{Secondary constraints (3)}
	hyperlink {sommaire}{Secondary constraints (3)}

	hyperlink {sommaire}{Dirac's algorithm (1)}
	hyperlink {sommaire}{Dirac's algorithm (1)}

	hyperlink {sommaire}{Dirac's algorithm (2)}
	hyperlink {sommaire}{Final constraint submanifold (1)}
	hyperlink {sommaire}{Final constraint submanifold (1)}

	hyperlink {sommaire}{Final constraint submanifold (2)}
	hyperlink {sommaire}{Final constraint submanifold (2)}
	hyperlink {sommaire}{Final constraint submanifold (2)}

	hyperlink {sommaire}{Final constraint submanifold (3)}
	hyperlink {sommaire}{Final constraint submanifold (3)}
	hyperlink {sommaire}{Final constraint submanifold (3)}
	hyperlink {sommaire}{Final constraint submanifold (3)}
	hyperlink {sommaire}{Final constraint submanifold (3)}

	hyperlink {sommaire}{First and second class constraints (1)}
	hyperlink {sommaire}{First and second class constraints (1)}
	hyperlink {sommaire}{First and second class constraints (1)}
	hyperlink {sommaire}{First and second class constraints (1)}

	hyperlink {sommaire}{First and second class constraints (2)}
	hyperlink {sommaire}{Poisson brackets of second class constraints}
	hyperlink {sommaire}{Poisson brackets of second class constraints}

	hyperlink {sommaire}{Symplectic explanation (1)}
	hyperlink {sommaire}{Symplectic explanation (1)}
	hyperlink {sommaire}{Symplectic explanation (1)}

	hyperlink {sommaire}{Symplectic explanation (2)}
	hyperlink {sommaire}{Symplectic explanation (2)}

	hyperlink {sommaire}{The Dirac bracket (1)}
	hyperlink {sommaire}{The Dirac bracket (1)}
	hyperlink {sommaire}{The Dirac bracket (1)}
	hyperlink {sommaire}{The Dirac bracket (1)}

	hyperlink {sommaire}{The Dirac bracket (2)}
	hyperlink {sommaire}{The Dirac bracket (2)}
	hyperlink {sommaire}{The Dirac bracket (2)}

	hyperlink {sommaire}{The Dirac bracket (3)}
	hyperlink {sommaire}{The Dirac bracket (3)}
	hyperlink {sommaire}{The Dirac bracket (3)}

	hyperlink {sommaire}{The Poisson-Dirac bivector (1)}
	hyperlink {sommaire}{The Poisson-Dirac bivector (1)}
	hyperlink {sommaire}{The Poisson-Dirac bivector (1)}

	hyperlink {sommaire}{The Poisson-Dirac bivector (2)}
	hyperlink {sommaire}{The Poisson-Dirac bivector (2)}
	hyperlink {sommaire}{The Poisson-Dirac bivector (2)}

	hyperlink {sommaire}{The Poisson-Dirac bivector (3)}
	hyperlink {sommaire}{The Poisson-Dirac bivector (3)}
	hyperlink {sommaire}{The Poisson-Dirac bivector (3)}
	hyperlink {sommaire}{The Poisson-Dirac bivector (3)}

	hyperlink {sommaire}{The Poisson-Dirac bivector (4)}
	hyperlink {sommaire}{Compatibility of $Lambda $ and $Lambda _D$}
	hyperlink {sommaire}{Compatibility of $Lambda $ and $Lambda _D$}
	hyperlink {sommaire}{Compatibility of $Lambda $ and $Lambda _D$}

	hyperlink {sommaire}{Example (1)}
	hyperlink {sommaire}{Example (2)}
	hyperlink {sommaire}{Example (2)}

	hyperlink {sommaire}{Example (3)}
	hyperlink {sommaire}{Example (3)}
	hyperlink {sommaire}{Example (3)}

	hyperlink {sommaire}{Example (4)}
	hyperlink {sommaire}{Example (4)}
	hyperlink {sommaire}{Example (4)}

	hyperlink {sommaire}{Example (5)}
	hyperlink {sommaire}{Example (5)}
	hyperlink {sommaire}{Example (5)}

	hyperlink {sommaire}{Example (6)}
	hyperlink {sommaire}{Example (6)}

	hyperlink {sommaire}{Example (7)}
	hyperlink {sommaire}{Thanks}
	hyperlink {sommaire}{References (1)}
	hyperlink {sommaire}{References (2)}

