A direct proof of Malus' theorem using the symplectic sructure of the set of oriented straight lines

Charles-Michel Marle

Université Pierre et Marie Curie
58-th Souriau Colloquium
Aix en Provence, July 2014

Summary

What is Malus' Theorem?
History of Malus' Theorem
A direct proof of Malus' Theorem
The symplectic structure of the set of all possible rays
Reflection is a symplectic diffeomorphism
Refraction is a symplectic diffeomorphism
Normal systems are Lagrangian submanifolds
Proof of Malus' Theorem
Thanks
References

What is Malus' theorem?

In (non-relativistic) Physics, once a unit of length is chosen, the Physical Space in which we live is a three-dimensional Euclidean affine space \mathcal{E}.
In Geometrical Optics, the propagation of light is described in terms of light rays (in short rays). In an homogeneous medium, rays are oriented straigh lines.
The set of all possible light rays, identified with the set of all possible oriented straight lines, depends on four parameters : indeed an oriented straight line D is determined by

- the unit vector \vec{u} parallel to and with the same orientation as D (2 parameters),
- and two more parameters, for example the coordinates of the intersection point of D with a plane not parallel to to \vec{u}, to fully determine the position of the straight line D.

Similarly, in an n-dimensional Euclidean affine space, the set of all possible oriented straight lines depends on 2($n-1$) parameters.

What is Malus' theorem? (2)

Definition

The rank of a family of light rays is the number of parameters of which this family depends.

Examples

The set of rays emitted by a luminous point source is a rank 2 family of rays.
The set of oriented normals to a smooth surface too is a rank 2 family of rays.

Definition

A rank 2 family of rays is said to be normal if through each point of a ray of the family, there exists a smooth surface such that all the neighbouring rays which cross that surface cross it orthogonally.

Example
Light rays emitted by a luminous point source : all the spheres centered on the point source are crossed by the rays orthogonally.

What is Malus' theorem? (3)

Theorem (Malus' Theorem)
A two parameter normal family of light rays remains normal after any number of reflections on smooth reflecting surfaces or refractions across smooth surfaces which separate transparent media with different refractive indexes. No assumption is made about the shapes of these surfaces. It is only assumed that these surfaces are smooth and that the reflections or refractions obey the well-known laws of Optics.

History of Malus' theorem (1)

Étienne Louis Malus (1775-1812) (X 1794) is a French scientist who investigated geometric properties of families of straight oriented lines, in view of applications to light rays. He developed Huygens undulatory theory of light. He discovered and investigated the phenomenon of polarization of light and the phenomenon of double refraction of light in crystals. He participated in Napoleon's disastrous expedition into Egypt (1798 to 1801) where he contracted diseases responsible for his early death..
He proved that the family of rays emitted by a luminous point source (which, as we have seen above, is normal) remains normal after one reflection on a smooth surface, or one refraction through a smooth surface, but he was not sure whether these propertied remain true for several reflections or refractions. His works of families or oriented straight lines were later used and enhanced by William Rowan Hamilton

History of Malus' theorem (2)

A full proof of Malus' Theorem was obtained independently by the famous Irish mathematician William Rowan Hamilton (1805-1865) and by the French scientist Charles Dupin (1784-1873). In French Optics manuals, Malus' Theorem is frequently called Malus-Dupin's Theorem. I do not know whether Hamilton obtained his proof before or after Dupin. I have not read Dupin's proof, but I have read Hamilton's proof given in his paper Theory of systems of rays (1827). That proof rests on the stationarity properties of the optical length of rays, with respect to infinitesimal displacements of the points of reflections or of refractions, on the reflecting or refracting surfaces.
Charles François Dupin (1784-1873) (X 1801) is a French mathematician and naval engineer. It is said in Wikipedia that he inspired to the famous poet and novelist Edgar Allan Poe (1809-1849) the figure of Auguste Dupin who appears in his three detective stories: The murders in the rue Morgue, The Mystery of Marie Roget, The Purloined Letter.

A direct proof of Malus' theorem

Malus' Theorem can be proven by using the stationarity of the optical length measured between two points on the same light ray, with respect to infinitesimal displacements of the points of reflection or of refraction between these two points. Using that property, it can be proven that starting from a surface orthogonal to the rays and displacing it along the rays, the optical length by which it is displaced being the same for all rays, we get another surface orthogonal to the rays. This is true even when during the displacement, refleting or refracting surfaces are encountered. Hamilton's proof rests on this idea.
I will propose now anoter proof of Malus' Theorem, which directly uses the laws of reflection and refraction in Optics. It is made in four steps.

A direct proof of Malus' theorem (2)

- I will first prove that the set of all possible light rays in an Euclidean 3-dimensional affine space has a smooth symplectic manifold structure, of dimension 4 (or, more generally, of dimension $2(n-1)$ if the Euclidean affine space is n-dimensional).
- Then, using the well known laws of Optics, I will prove that reflections and refractions are symplectic diffeomorphisms.
- Next, I will prove that a rank 2 family of rays is normal if and only if it is a Lagrangian submanifold of the symplectic manifold of all possible rays. (If the Euclidean space is n-dimensional, replace rank 2 by rank $n-1$).
- Finally, Malus' Theorem easily follows.

The symplectic structure of the set of all possible rays

Proposition

The set \mathcal{L} of all possible oriented straight lines in the affine Euclidean space \mathcal{E} is diffeomorphic to the cotangent bundle $T^{*} \Sigma$ to a sphere, by a symplectic diffeomorphism.
Proof
Let indeed Σ be a sphere of any fixed radius R (for example $R=1$), centered on a point C, and O be another fixed point in \mathcal{E}. Of course we can take $O=C$, but for clarity it is better to separate these two points. An oriented straight line L determines

- an unique point $m \in \Sigma$ such that the vector $\vec{u}=\overrightarrow{C m}$ is parallel to and of same direction as L,
- an unique linear form η on the tangent space $T_{m} \Sigma$ at m to the sphere Σ, given by

$$
\eta(\vec{w})=\overrightarrow{O P} \cdot \vec{w} \quad \text { for all } \quad \vec{w} \in T_{m} \Sigma
$$

where P is any point of the line L.

The symplectic structure of the set of all possible rays (2)

The pair (m, η) is an element of the cotangent bundle $T^{*} \Sigma$. In fact m being determined by η, we can say that η is an element of $T^{*} \Sigma$.
Conversely, an element $\eta \in T^{*} \Sigma$, i.e. a linear form η on the tangent space to Σ at some point $m \in \Sigma$, determines an oriented straight line L, parallel to and of the same direction as $\vec{u}=\overrightarrow{C m}$. This line is the set of points $P \in \mathcal{E}$ such that

$$
\overrightarrow{O P} \cdot \vec{w}=\eta(\vec{w}) \quad \text { for all } \vec{w} \in T_{m} \Sigma
$$

There exists on the cotangent bundle $T^{*} \Sigma$ a unique differential one-form λ_{Σ}, called the Liouville form, whose exterior differential $\mathrm{d} \lambda_{\Sigma}$ is a symplectic form on $T^{*} \Sigma$. The above described diffeomorphism between the set \mathcal{L} of all oriented straight lines and the cotangent bundle $T^{*} \Sigma$ allows us to transport on \mathcal{L} the Liouville one form λ_{Σ} and the symplectic form $\mathrm{d} \lambda_{\Sigma}$. So we get on \mathcal{L} a differential one-form λ_{O} and a symplectic form $\omega=\mathrm{d} \lambda_{O}$. Therefore (\mathcal{L}, ω) is a symplectic manifold.

The symplectic structure of the set of all possible rays (3)

The diffeomorphism so obtained, the one-form λ_{O} and its exterior differential $\omega=\mathrm{d} \lambda_{O}$ do not depend on the choice of the centre C of the sphere Σ (with the obvious convention that two spheres of the same radius centered on two different points C and C^{\prime} are identified by means of the translation which sends C on C^{\prime}).
However, this diffeomorphism depends on the choice of the point O, and so does the one-form λ_{O} : when, to a given straight line L, the choice of O associates the pair $(m, \eta) \in T^{*} \Sigma$, the choice of another point O^{\prime} associates the pair $\left(m, \eta+\mathrm{d} f_{O^{\prime} O}(m)\right)$, where $f_{O^{\prime} O}: \Sigma \rightarrow \mathbb{R}$ is the smooth function defined on Σ

$$
f_{O^{\prime} O}(n)=\overrightarrow{O^{\prime} O} \cdot \overrightarrow{C n}, \quad n \in \Sigma
$$

Therefore, if the choice of O determines on \mathcal{L} the one-form λ_{O}, the choice of O^{\prime} determines the one-form

$$
\lambda_{O^{\prime}}=\lambda_{O}+\mathrm{d}\left(f_{O^{\prime} O} \circ \pi_{\Sigma}\right)
$$

where $\pi_{\Sigma}: T^{*} \Sigma \rightarrow \Sigma$ is the canonical projection.

The symplectic structure of the set of all possible rays (4)

The symplectic form ω on the set of all oriented straight lines \mathcal{L} does not depend on the choice of O, nor on the choice of C, since we have

$$
\omega=\mathrm{d} \lambda_{O}=\mathrm{d} \lambda_{O^{\prime}} \quad \text { because } \mathrm{d} \circ \mathrm{~d}=0
$$

Proposition

Let $\left(\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right)$ be an orthonormal basis of the Euclidean vector space $\overrightarrow{\mathcal{E}}$ associated to the affine Euclidean space \mathcal{E}. Any oriented straight line $L \in \mathcal{L}$ can be determined by its unit directing vector \vec{u} ans by a point $P \in L$ (determined up to addition of a vector collinear with \vec{u}). Expressed in terms of the coordinates $\left(p_{1}, p_{2}, p_{3}\right)$ of P in the affine frame $\left(O, \vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right)$ and of the components $\left(u_{1}, u_{2}, u_{3}\right)$ of \vec{u}, the symplectic form ω is given by

$$
\omega=\sum_{i=1}^{3} \mathrm{~d} p_{i} \wedge \mathrm{~d} u_{i}
$$

The symplectic structure of the set of all possible rays (5)

Proof. Using the definition of the Liouville one-form on $T^{*} \Sigma$, we see that

$$
\lambda_{0}=\sum_{i=1}^{3} p_{i} \mathrm{~d} u_{i}
$$

Therefore

$$
\omega=\mathrm{d} \lambda_{O}=\sum_{i=1}^{3} \mathrm{~d} p_{i} \wedge \mathrm{~d} u_{i}
$$

Remark

The three components u_{1}, u_{2}, u_{3} of \vec{u} are not independent, since they must satisfy $\sum_{i=1}^{3}\left(u_{i}\right)^{2}=1$. The point $P \in L$ used to detemine the oriented straight line L is not uniquely determined, since by adding to P any vector collinear with \vec{u} we get another point in L. However, these facts do not affect the validity of the expression of ω given above.

The symplectic structure of the set of all possible rays (6)

Remark

The symplectic form ω can be expressed very concisely by using an obvious vector notation combining the wedge and scalar products :

$$
\omega(P, \vec{u})=\mathrm{d} \vec{P} \wedge \mathrm{~d} \vec{u} .
$$

Reflection is a symplectic diffeomorphism

Proposition

Let M be a smooth reflecting surface. Let Reflx_{M} be the map which associates to each light ray L_{1} which hits M on its reflecting side, the reflected light ray $L_{2}=\operatorname{Reflx}_{M}\left(L_{1}\right)$. The map Reflx_{M} is a symplectic diffeomorphism defined on the open subset of the symplectic manifold (\mathcal{L}, ω) made by light rays which hit Mon its reflecting side, onto the open subset made by the same straight lines with the opposite orientation.
Proof. Any oriented straight line L_{1} which hits the mirror M is determined by

- the unit vector \vec{u}_{1} parallel to and of same direction as L_{1},
- the incidence point $P \in M$ of the light ray on the mirror. We will write \vec{P} for the vector $\overrightarrow{O P}$, the fixed point O being arbitrarily chosen.

Reflection is a symplectic diffeomorphism (2)

The reflected ray L_{2} is determined by

- the unit vector \vec{u}_{2}, given in terms of \vec{u}_{1} by the formula

$$
\vec{u}_{2}=\vec{u}_{1}+2\left(\vec{u}_{1} \cdot \vec{n}\right) \vec{n}
$$

where \vec{n} is a unit vector normal to the mirror M at the incidence point P, with anyone of the two possible orientations;

- the same point $P \in M$ on the mirror.

According to the expression of the symplectic form ω given in the last Remark, we have to check that $\mathrm{d} \vec{P} \wedge \mathrm{~d} \vec{u}_{2}=\mathrm{d} \vec{P} \wedge \mathrm{~d} \vec{u}_{1}$. We have

$$
\begin{aligned}
\mathrm{d} \vec{P} \wedge \mathrm{~d}\left(\vec{u}_{2}-\vec{u}_{1}\right) & =2 \mathrm{~d} \vec{P} \wedge \mathrm{~d}\left(\left(\vec{u}_{1} \cdot \vec{n}\right) \vec{n}\right) \\
& =-2 \mathrm{~d}\left(\left(\vec{u}_{1} \cdot \vec{n}\right)(\vec{n} \cdot \mathrm{~d} \vec{P})\right) \\
& =0
\end{aligned}
$$

because $\vec{n} . \mathrm{d} \vec{P}=0$, the differential $\mathrm{d} \vec{P}$ lying tangent to the mirror M, while the vector \vec{n} is normal to the mirror.
Charles-Michel Marle, Université Pierre et Marie CurieA direct proof of Malus' theorem using the symplectic sructure of the set of oriented straight lines $17 / 28$

Refraction is a symplectic diffeomorphism

Proposition

Let R be a smooth refracting surface, which separates two transparent media with refractive indexes n_{1} and n_{2}. Let $\operatorname{Refrac}_{R}$ be the map which associates, to each light ray L_{1} which hits the refracting surface R on the side of refracting index n_{1}, the corresponding refracted ray $L_{2}=\operatorname{Refrac}_{R}\left(L_{1}\right)$ determined by Snell's law of refraction. The map $\operatorname{Refrac}_{R}$ is a symplectic diffeomorphism defined on an open subset of $\left(\mathcal{L}, n_{1} \omega\right)$, (the set of oriented straight lines which hit R on the n_{1} side and, if $n_{1}>n_{2}$, are not totally reflected) with values in an open subset of $\left(\mathcal{L}, n_{2} \omega\right)$.
Proof. Any oriented straight line L_{1} which hits the refracting surface R is determined by

- the unit vector \vec{u}_{1} parallel to and of same direction as L_{1},
- the incidence point $P \in R$ of the light ray on the refracting surface.
We will write \vec{P} for the vector $\overrightarrow{O P}$, the fixed point O being

Refraction is a symplectic diffeomorphism (2)

The refracted ray L_{2} is determined by

- the unit vector \vec{u}_{2}, related to \vec{u}_{1} by the formula

$$
n_{2}\left(\vec{u}_{2}-\left(\vec{u}_{2} \cdot \vec{n}\right) \vec{n}\right)=n_{1}\left(\vec{u}_{1}-\left(\vec{u}_{1} \cdot \vec{n}\right) \vec{n}\right),
$$

where \vec{n} is a unit vector normal to the refractig surface R at the incidence point P, with anyone of the two possible orientations;

- the same point $P \in R$ on the refracting surface.

We have to check that $n_{2} \mathrm{~d} \vec{P} \wedge \mathrm{~d} \vec{u}_{2}=n_{1} \mathrm{~d} \vec{P} \wedge \mathrm{~d} \vec{u}_{1}$. We have

$$
\begin{aligned}
\mathrm{d} \vec{P} \wedge\left(n_{2} \mathrm{~d} \vec{u}_{2}-n_{1} \mathrm{~d} \vec{u}_{1}\right) & =\mathrm{d} \vec{P} \wedge \mathrm{~d}\left(n_{2}\left(\vec{u}_{2} \cdot \vec{n}\right) \vec{n}-n_{1}\left(\vec{u}_{1} \cdot \vec{n}\right) \vec{n}\right) \\
& =-\mathrm{d}\left(\left(n_{2}\left(\vec{u}_{2} \cdot \vec{n}\right)-n_{1}\left(\vec{u}_{1} \cdot \vec{n}\right)\right)(\vec{n} \cdot \mathrm{~d} \vec{P})\right) \\
& =0
\end{aligned}
$$

because $\vec{n} . \mathrm{d} \vec{P}=0$, the differential $\mathrm{d} \vec{P}$ lying tangent to the refracting surface R, while the vector \vec{n} is normal to R.

Normal systems are Lagrangian submanifolds

Proposition

A rank 2 family of oriented straight lines, i.e. a family depending smoothly on 2 parameters, is normal if and only if it is a Lagrangian submanifold of the symplectic manifold (\mathcal{L}, ω) of all oriented straight lines.
Proof. Let us consider a rank 2 family of oriented straight lines. Locally, in a neighbourhood of each of its straight lines, the family can be determined by a smooth map $\left(k_{1}, k_{2}\right) \mapsto L\left(k_{1}, k_{2}\right)$, defined on an open substet of \mathbb{R}^{2}, with values in the manifold \mathcal{L} of oriented straight lines. For each value of $\left(k_{1}, k_{2}\right)$, the ray $L\left(k_{1}, k_{2}\right)$ can be determined by

- a point $P\left(k_{1}, k_{2}\right)$ of the ray $L\left(k_{1}, k_{2}\right)$,
- the unit director vector $\vec{u}\left(k_{1}, k_{2}\right)$ of the ray $L\left(k_{1}, k_{2}\right)$ Although $P\left(k_{1}, k_{2}\right)$ is not uniquely determined, we can arrange things so that the map $\left(k_{1}, k_{2}\right) \mapsto\left(P\left(k_{1}, k_{2}\right), \vec{u}\left(k_{1}, k_{2}\right)\right)$ is smooth. By assumption it is everywhere of rank 2.

Normal systems are Lagrangian submanifolds (2)

The reciprocal image of the symplectic form ω of \mathcal{L} by the map $\left(k_{1}, k_{2}\right) \mapsto\left(P\left(k_{1}, k_{2}\right), \vec{u}\left(k_{1}, k_{2}\right)\right)$ is

$$
\left(\frac{\partial \vec{P}\left(k_{1}, k_{2}\right)}{\partial k_{1}} \frac{\partial \vec{u}\left(k_{1}, k_{2}\right)}{\partial k_{2}}-\frac{\partial \vec{P}\left(k_{1}, k_{2}\right)}{\partial k_{2}} \frac{\partial \vec{u}\left(k_{1}, k_{2}\right)}{\partial k_{1}}\right) \mathrm{d} k_{1} \wedge \mathrm{~d} k_{2}
$$

where, as before, we have written $\vec{P}\left(k_{1}, k_{2}\right)$ for $\overrightarrow{O P}\left(k_{1}, k_{2}\right)$, the origin O being any fixed point in \mathcal{E}. Using the symmetry property of the second derivatives

$$
\frac{\partial^{2} \vec{P}\left(k_{1}, k_{2}\right)}{\partial k_{1} \partial k_{2}}=\frac{\partial^{2} \vec{P}\left(k_{1}, k_{2}\right)}{\partial k_{2} \partial k_{1}}
$$

we see that the reciprocal image of ω can be written

$$
\left(\frac{\partial}{\partial k_{2}}\left(\vec{u} \cdot \frac{\partial \vec{P}}{\partial k_{1}}\right)-\frac{\partial}{\partial k_{1}}\left(\vec{u} \cdot \frac{\partial \vec{P}}{\partial k_{2}}\right)\right) \mathrm{d} k_{1} \wedge \mathrm{~d} k_{2} .
$$

where we have written \vec{u} and \vec{P} for $\vec{u}\left(k_{1}, k_{2}\right)$ and $\vec{P}\left(k_{1}, k_{2}\right)$.

Normal systems are Lagrangian submanifolds (3)

Our rank 2 family of rays is a Lagrangian submanifold of (\mathcal{L}, ω) is and only if the reciprocal image of ω vanishes, i.e., if and only if

$$
\frac{\partial}{\partial k_{2}}\left(\vec{u} \cdot \frac{\partial \vec{P}}{\partial k_{1}}\right)=\frac{\partial}{\partial k_{1}}\left(\vec{u} \cdot \frac{\partial \vec{P}}{\partial k_{2}}\right),
$$

or if and only if there exists locally a smooth function $\left(k_{1}, k_{2}\right) \mapsto F\left(k_{1}, k_{2}\right)$ such that

$$
\begin{equation*}
\vec{u} \cdot \frac{\partial \vec{P}}{\partial k_{1}}=\frac{\partial F}{\partial k_{1}}, \quad \vec{U} \cdot \frac{\partial \vec{P}}{\partial k_{2}}=\frac{\partial F}{\partial k_{2}} . \tag{*}
\end{equation*}
$$

Let us now look at the necessary and sufficient conditions under which there exists locally, near a given ray of the family, there exists a smooth surface orthogonal to all the neighbouring rays of the family. This surface is the image of a map

$$
\left(k_{1}, k_{2}\right) \mapsto P\left(k_{1}, k_{2}\right)+\lambda\left(k_{1}, k_{2}\right) \vec{u}\left(k_{1}, k_{2}\right),
$$

where $\left(k_{1}, k_{2}\right) \mapsto \lambda\left(k_{1}, k_{2}\right)$ is a smooth function.

Normal systems are Lagrangian submanifolds (4)

This surface is orhtogonal to the rays if and only if the function λ is such that

$$
\vec{u}\left(k_{1}, k_{2}\right) \cdot \mathrm{d}\left(\vec{P}\left(k_{1}, k_{2}\right)+\lambda\left(k_{1}, k_{2}\right) \vec{u}\left(k_{1}, k_{2}\right)\right)=0 .
$$

By using the equalities $\vec{u}\left(k_{1}, k_{2}\right) \cdot d \vec{u}\left(k_{1}, k_{2}\right)=0$ and $\vec{u}\left(k_{1}, k_{2}\right) \cdot \vec{u}\left(k_{1}, k_{2}\right)=1$, this condition becomes

$$
\begin{equation*}
\vec{u}\left(k_{1}, k_{2}\right) \cdot \mathrm{d} \vec{P}\left(k_{1}, k_{2}\right)+\mathrm{d} \lambda\left(k_{1}, k_{2}\right)=0 . \tag{**}
\end{equation*}
$$

We see that when there exists a smooth function F which satifies $(*)$, all functions $\lambda=-F+$ Constant satisfy $(* *)$, and conversely when there exists a smooth function λ which satisfies ($* *$), all functions $F=-\lambda+$ Constant satisfy $(*)$. A rank 2 family of rays is therefore normal il and only if it is a Lagrangian submanifold of \mathcal{L}.

Proof of Malus' Theorem

Since reflections and refractions are symplectic diffeomorphisms, and since by composing several symplectic diffeomorphisms we get again a symplectic diffeomorphism, the travel of light rays through an optical device with any number of reflecting or refracting smooth surfaces is a symplectic diffeomorphism.
The image of a Lagrangian submanifold by a symplectic diffeomorphism is automatically a Lagrangian submanifold.
This proves Malus' Theorem.

Thanks

I address my warmest thanks to Géry de Saxcé for offering me to present a talk at this meeting, and for all the efforts he made (and is still making) for its success.

Thanks to all the persons who patiently listened to my talk!

References I

[1] W. R. Hamilton, On Caustics, Part First. In Sir William Rowan Hamilton mathematical Works, vol. I, chapter XV, Cambridge University Press.
[2] W. R. Hamilton, Theory of systems of rays, Part First and Part Second (1827). In Sir William Rowan Hamilton mathematical Works, vol. I, chapter I, Cambridge University Press.
[3] W. R. Hamilton, Supplement to an essay on the theory of systems of rays (1830). In Sir William Rowan Hamilton mathematical Works, vol. I, chapters II, Cambridge University Press.
[4] W. R. Hamilton, Second supplement to an essay on the theory of systems of rays (1830). In Sir William Rowan Hamilton mathematical Works, vol. I, chapters III, Cambridge University Press.

References II

[5] W. R. Hamilton, Third supplement to an essay on the theory of systems of rays (1830). In Sir William Rowan Hamilton mathematical Works, vol. I, chapter IV, Cambridge University Press.
[6] W. R. Hamilton, On a view of mathematical optics (1832). In Sir William Rowan Hamilton mathematical Works, vol. I, chapter V, Cambridge University Press.
[7] W. R. Hamilton, On the paths of light, and of the planets (1833). In Sir William Rowan Hamilton mathematical Works, vol. I, chapter XI, Cambridge University Press.
[8] W. R. Hamilton, On a general method in Dynamics. Read April 10, 1834, Philosophical Transactions of the Royal Society, part II for 1834, pp. 247-308. In Sir William Rowan Hamilton mathematical Works, vol. IV, Cambridge University Press.

References III

[9] W. R. Hamilton, Second essay on a general method in Dynamics. Read January 15, 1835, Philosophical Transactions of the Royal Society, part I for 1835, pp. 95-144. In Sir William Rowan Hamilton mathematical Works, vol. IV, Cambridge University Press.

