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What is Malus’ theorem ?
In (non-relativistic) Physics, once a unit of length is chosen, the
Physical Space in which we live is a three-dimensional Euclidean
affine space E .

In Geometrical Optics, the propagation of light is described in
terms of light rays (in short rays). In an homogeneous medium,
rays are oriented straigh lines.

The set of all possible light rays, identified with the set of all
possible oriented straight lines, depends on four parameters :
indeed an oriented straight line D is determined by

the unit vector −→u parallel to and with the same orientation as
D (2 parameters),

and two more parameters, for example the coordinates of the
intersection point of D with a plane not parallel to to −→u , to
fully determine the position of the straight line D.

Similarly, in an n-dimensional Euclidean affine space, the set of all
possible oriented straight lines depends on 2(n − 1) parameters.
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What is Malus’ theorem ? (2)

Definition
The rank of a family of light rays is the number of parameters of
which this family depends.

Examples

The set of rays emitted by a luminous point source is a rank 2
family of rays.

The set of oriented normals to a smooth surface too is a rank 2
family of rays.

Definition
A rank 2 family of rays is said to be normal if through each point of
a ray of the family, there exists a smooth surface such that all the
neighbouring rays which cross that surface cross it orthogonally.

Example

Light rays emitted by a luminous point source : all the spheres
centered on the point source are crossed by the rays orthogonally.
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What is Malus’ theorem ? (3)

Theorem (Malus’ Theorem)

A two parameter normal family of light rays remains normal after
any number of reflections on smooth reflecting surfaces or
refractions across smooth surfaces which separate transparent
media with different refractive indexes. No assumption is made
about the shapes of these surfaces. It is only assumed that these
surfaces are smooth and that the reflections or refractions obey the
well-known laws of Optics.
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History of Malus’ theorem (1)

Étienne Louis Malus (1775–1812) (X 1794) is a French scientist
who investigated geometric properties of families of straight
oriented lines, in view of applications to light rays. He developed
Huygens undulatory theory of light. He discovered and investigated
the phenomenon of polarization of light and the phenomenon of
double refraction of light in crystals. He participated in Napoleon’s
disastrous expedition into Egypt (1798 to 1801) where he
contracted diseases responsible for his early death..

He proved that the family of rays emitted by a luminous point
source (which, as we have seen above, is normal) remains normal
after one reflection on a smooth surface, or one refraction through
a smooth surface, but he was not sure whether these propertied
remain true for several reflections or refractions. His works of
families or oriented straight lines were later used and enhanced by
William Rowan Hamilton
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History of Malus’ theorem (2)
A full proof of Malus’ Theorem was obtained independently by the
famous Irish mathematician William Rowan Hamilton (1805–1865)
and by the French scientist Charles Dupin (1784–1873). In French
Optics manuals, Malus’ Theorem is frequently called
Malus-Dupin’s Theorem. I do not know whether Hamilton obtained
his proof before or after Dupin. I have not read Dupin’s proof, but
I have read Hamilton’s proof given in his paper Theory of systems
of rays (1827). That proof rests on the stationarity properties of
the optical length of rays, with respect to infinitesimal
displacements of the points of reflections or of refractions, on the
reflecting or refracting surfaces.

Charles François Dupin (1784–1873) (X 1801) is a French
mathematician and naval engineer. It is said in Wikipedia that he
inspired to the famous poet and novelist Edgar Allan Poe
(1809–1849) the figure of Auguste Dupin who appears in his three
detective stories : The murders in the rue Morgue, The Mystery of
Marie Roget, The Purloined Letter.
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A direct proof of Malus’ theorem

Malus’ Theorem can be proven by using the stationarity of the
optical length measured between two points on the same light ray,
with respect to infinitesimal displacements of the points of
reflection or of refraction between these two points. Using that
property, it can be proven that starting from a surface orthogonal
to the rays and displacing it along the rays, the optical length by
which it is displaced being the same for all rays, we get another
surface orthogonal to the rays. This is true even when during the
displacement, refleting or refracting surfaces are encountered.
Hamilton’s proof rests on this idea.

I will propose now anoter proof of Malus’ Theorem, which directly
uses the laws of reflection and refraction in Optics. It is made in
four steps.
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A direct proof of Malus’ theorem (2)

I will first prove that the set of all possible light rays in an
Euclidean 3-dimensional affine space has a smooth symplectic
manifold structure, of dimension 4 (or, more generally, of
dimension 2(n − 1) if the Euclidean affine space is
n-dimensional).

Then, using the well known laws of Optics, I will prove that
reflections and refractions are symplectic diffeomorphisms.

Next, I will prove that a rank 2 family of rays is normal if and
only if it is a Lagrangian submanifold of the symplectic
manifold of all possible rays. (If the Euclidean space is
n-dimensional, replace rank 2 by rank n − 1).

Finally, Malus’ Theorem easily follows.
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The symplectic structure of the set of all possible rays

Proposition

The set L of all possible oriented straight lines in the affine
Euclidean space E is diffeomorphic to the cotangent bundle T ∗Σ
to a sphere, by a symplectic diffeomorphism.

Proof
Let indeed Σ be a sphere of any fixed radius R (for example
R = 1), centered on a point C , and O be another fixed point in E .
Of course we can take O = C , but for clarity it is better to
separate these two points. An oriented straight line L determines

an unique point m ∈ Σ such that the vector −→u =
−→
Cm is

parallel to and of same direction as L,

an unique linear form η on the tangent space TmΣ at m to
the sphere Σ, given by

η(−→w ) =
−→
OP.−→w for all −→w ∈ TmΣ ,

where P is any point of the line L.
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The symplectic structure of the set of all possible rays (2)
The pair (m, η) is an element of the cotangent bundle T ∗Σ. In fact
m being determined by η, we can say that η is an element of T ∗Σ.

Conversely, an element η ∈ T ∗Σ, i.e. a linear form η on the
tangent space to Σ at some point m ∈ Σ, determines an oriented

straight line L, parallel to and of the same direction as −→u =
−→
Cm.

This line is the set of points P ∈ E such that
−→
OP.−→w = η(−→w ) for all −→w ∈ TmΣ .

There exists on the cotangent bundle T ∗Σ a unique differential
one-form λΣ, called the Liouville form, whose exterior differential
dλΣ is a symplectic form on T ∗Σ. The above described
diffeomorphism between the set L of all oriented straight lines and
the cotangent bundle T ∗Σ allows us to transport on L the
Liouville one form λΣ and the symplectic form dλΣ. So we get on
L a differential one-form λO and a symplectic form ω = dλO .
Therefore (L, ω) is a symplectic manifold.
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The symplectic structure of the set of all possible rays (3)
The diffeomorphism so obtained, the one-form λO and its exterior
differential ω = dλO do not depend on the choice of the centre C
of the sphere Σ (with the obvious convention that two spheres of
the same radius centered on two different points C and C ′ are
identified by means of the translation which sends C on C ′).

However, this diffeomorphism depends on the choice of the point
O, and so does the one-form λO : when, to a given straight line L,
the choice of O associates the pair (m, η) ∈ T ∗Σ, the choice of
another point O ′ associates the pair

(
m, η + dfO′O(m)

)
, where

fO′O : Σ→ R is the smooth function defined on Σ

fO′O(n) =
−−→
O ′O.

−→
Cn , n ∈ Σ .

Therefore, if the choice of O determines on L the one-form λO ,
the choice of O ′ determines the one-form

λO′ = λO + d(fO′O ◦ πΣ)

where πΣ : T ∗Σ→ Σ is the canonical projection.
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The symplectic structure of the set of all possible rays (4)
The symplectic form ω on the set of all oriented straight lines L
does not depend on the choice of O, nor on the choice of C , since
we have

ω = dλO = dλO′ because d ◦ d = 0 .

Proposition

Let (−→e 1,
−→e 2,
−→e 3) be an orthonormal basis of the Euclidean vector

space
−→
E associated to the affine Euclidean space E . Any oriented

straight line L ∈ L can be determined by its unit directing vector
−→u ans by a point P ∈ L (determined up to addition of a vector
collinear with −→u ). Expressed in terms of the coordinates
(p1, p2, p3) of P in the affine frame (O,−→e 1,

−→e 2,
−→e 3) and of the

components (u1, u2, u3) of −→u , the symplectic form ω is given by

ω =
3∑

i=1

dpi ∧ dui .
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The symplectic structure of the set of all possible rays (5)

Proof. Using the definition of the Liouville one-form on T ∗Σ, we
see that

λ0 =
3∑

i=1

pidui .

Therefore

ω = dλO =
3∑

i=1

dpi ∧ dui .

Remark
The three components u1, u2, u3 of −→u are not independent, since
they must satisfy

∑3
i=1(ui )

2 = 1. The point P ∈ L used to
detemine the oriented straight line L is not uniquely determined,
since by adding to P any vector collinear with −→u we get another
point in L. However, these facts do not affect the validity of the
expression of ω given above.
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The symplectic structure of the set of all possible rays (6)

Remark
The symplectic form ω can be expressed very concisely by using an
obvious vector notation combining the wedge and scalar products :

ω(P,−→u ) = d
−→
P ∧ d−→u .
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Reflection is a symplectic diffeomorphism

Proposition

Let M be a smooth reflecting surface. Let ReflxM be the map
which associates to each light ray L1 which hits M on its reflecting
side, the reflected light ray L2 = ReflxM(L1). The map ReflxM is a
symplectic diffeomorphism defined on the open subset of the
symplectic manifold (L, ω) made by light rays which hit Mon its
reflecting side, onto the open subset made by the same straight
lines with the opposite orientation.

Proof. Any oriented straight line L1 which hits the mirror M is
determined by

the unit vector −→u 1 parallel to and of same direction as L1,

the incidence point P ∈ M of the light ray on the mirror.

We will write
−→
P for the vector

−→
OP, the fixed point O being

arbitrarily chosen.
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Reflection is a symplectic diffeomorphism (2)
The reflected ray L2 is determined by

the unit vector −→u 2, given in terms of −→u 1 by the formula
−→u 2 = −→u 1 + 2(−→u 1.

−→n )−→n ,

where −→n is a unit vector normal to the mirror M at the
incidence point P, with anyone of the two possible
orientations ;
the same point P ∈ M on the mirror.

According to the expression of the symplectic form ω given in the

last Remark, we have to check that d
−→
P ∧ d−→u 2 = d

−→
P ∧ d−→u 1. We

have

d
−→
P ∧ d(−→u 2 −−→u 1) = 2d

−→
P ∧ d

(
(−→u 1.

−→n )−→n
)

= −2d
(
(−→u 1.

−→n )(−→n .d
−→
P )
)

= 0 ,

because −→n .d
−→
P = 0, the differential d

−→
P lying tangent to the

mirror M, while the vector −→n is normal to the mirror.
Charles-Michel Marle, Université Pierre et Marie CurieA direct proof of Malus’ theorem using the symplectic sructure of the set of oriented straight lines17/28



Refraction is a symplectic diffeomorphism

Proposition

Let R be a smooth refracting surface, which separates two
transparent media with refractive indexes n1 and n2. Let RefracR
be the map which associates, to each light ray L1 which hits the
refracting surface R on the side of refracting index n1, the
corresponding refracted ray L2 = RefracR(L1) determined by
Snell’s law of refraction. The map RefracR is a symplectic
diffeomorphism defined on an open subset of (L, n1ω), (the set of
oriented straight lines which hit R on the n1 side and, if n1 > n2,
are not totally reflected) with values in an open subset of (L, n2ω).

Proof. Any oriented straight line L1 which hits the refracting
surface R is determined by

the unit vector −→u 1 parallel to and of same direction as L1,
the incidence point P ∈ R of the light ray on the refracting
surface.

We will write
−→
P for the vector

−→
OP, the fixed point O being
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Refraction is a symplectic diffeomorphism (2)
The refracted ray L2 is determined by

the unit vector −→u 2, related to −→u 1 by the formula

n2

(−→u 2 − (−→u 2.
−→n )−→n

)
= n1

(−→u 1 − (−→u 1.
−→n )−→n

)
,

where −→n is a unit vector normal to the refractig surface R at
the incidence point P, with anyone of the two possible
orientations ;

the same point P ∈ R on the refracting surface.

We have to check that n2d
−→
P ∧ d−→u 2 = n1d

−→
P ∧ d−→u 1. We have

d
−→
P ∧ (n2d−→u 2 − n1d−→u 1) = d

−→
P ∧ d

(
n2(−→u 2.

−→n )−→n − n1(−→u 1.
−→n )−→n

)
= −d

((
n2(−→u 2.

−→n )− n1(−→u 1.
−→n )
)
(−→n .d

−→
P )
)

= 0 ,

because −→n .d
−→
P = 0, the differential d

−→
P lying tangent to the

refracting surface R, while the vector −→n is normal to R.
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Normal systems are Lagrangian submanifolds

Proposition

A rank 2 family of oriented straight lines, i.e. a family depending
smoothly on 2 parameters, is normal if and only if it is a
Lagrangian submanifold of the symplectic manifold (L, ω) of all
oriented straight lines.

Proof. Let us consider a rank 2 family of oriented straight lines.
Locally, in a neighbourhood of each of its straight lines, the family
can be determined by a smooth map (k1, k2) 7→ L(k1, k2), defined
on an open substet of R2, with values in the manifold L of
oriented straight lines. For each value of (k1, k2), the ray L(k1, k2)
can be determined by

a point P(k1, k2) of the ray L(k1, k2),

the unit director vector −→u (k1, k2) of the ray L(k1, k2)

Although P(k1, k2) is not uniquely determined, we can arrange
things so that the map (k1, k2) 7→

(
P(k1, k2),−→u (k1, k2)

)
is

smooth. By assumption it is everywhere of rank 2.
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Normal systems are Lagrangian submanifolds (2)
The reciprocal image of the symplectic form ω of L by the map
(k1, k2) 7→

(
P(k1, k2),−→u (k1, k2)

)
is(

∂
−→
P (k1, k2)

∂k1

∂−→u (k1, k2)

∂k2
− ∂
−→
P (k1, k2)

∂k2

∂−→u (k1, k2)

∂k1

)
dk1 ∧ dk2 ,

where, as before, we have written
−→
P (k1, k2) for

−→
OP(k1, k2), the

origin O being any fixed point in E . Using the symmetry property
of the second derivatives

∂2−→P (k1, k2)

∂k1∂k2
=
∂2−→P (k1, k2)

∂k2∂k1

we see that the reciprocal image of ω can be written(
∂

∂k2

(
−→u .∂
−→
P

∂k1

)
− ∂

∂k1

(
−→u .∂
−→
P

∂k2

))
dk1 ∧ dk2 .

where we have written −→u and
−→
P for −→u (k1, k2) and

−→
P (k1, k2).
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Normal systems are Lagrangian submanifolds (3)
Our rank 2 family of rays is a Lagrangian submanifold of (L, ω) is
and only if the reciprocal image of ω vanishes, i.e., if and only if

∂

∂k2

(
−→u .∂
−→
P

∂k1

)
=

∂

∂k1

(
−→u .∂
−→
P

∂k2

)
,

or if and only if there exists locally a smooth function
(k1, k2) 7→ F (k1, k2) such that

−→u .∂
−→
P

∂k1
=
∂F

∂k1
, −→u .∂

−→
P

∂k2
=
∂F

∂k2
. (∗)

Let us now look at the necessary and sufficient conditions under
which there exists locally, near a given ray of the family, there
exists a smooth surface orthogonal to all the neighbouring rays of
the family. This surface is the image of a map

(k1, k2) 7→ P(k1, k2) + λ(k1, k2)−→u (k1, k2) ,

where (k1, k2) 7→ λ(k1, k2) is a smooth function.
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Normal systems are Lagrangian submanifolds (4)

This surface is orhtogonal to the rays if and only if the function λ
is such that

−→u (k1, k2).d
(−→

P (k1, k2) + λ(k1, k2)−→u (k1, k2)
)

= 0 .

By using the equalities −→u (k1, k2).d−→u (k1, k2) = 0 and
−→u (k1, k2).−→u (k1, k2) = 1, this condition becomes

−→u (k1, k2).d
−→
P (k1, k2) + dλ(k1, k2) = 0 . (∗∗)

We see that when there exists a smooth function F which satifies
(∗), all functions λ = −F + Constant satisfy (∗∗), and conversely
when there exists a smooth function λ which satisfies (∗∗), all
functions F = −λ + Constant satisfy (∗). A rank 2 family of rays is
therefore normal il and only if it is a Lagrangian submanifold of L.
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Proof of Malus’ Theorem

Since reflections and refractions are symplectic diffeomorphisms,
and since by composing several symplectic diffeomorphisms we get
again a symplectic diffeomorphism, the travel of light rays through
an optical device with any number of reflecting or refracting
smooth surfaces is a symplectic diffeomorphism.

The image of a Lagrangian submanifold by a symplectic
diffeomorphism is automatically a Lagrangian submanifold.

This proves Malus’ Theorem.
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