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1. Introduction

I present in this talk some tools in Symplectic and Poisson
Geometry in view of their applications in Geometric Mechanics and
Mathematical Physics.

In parts 2 and 3 I discuss the Lagrangian formalism and Lagrangian
symmetries, and in parts 4 and 5 the Hamiltonian formalism and
Hamiltonian symmetries. The Tulczyjew isomorphisms, which
explain some aspects of the relations between the Lagrangian and
Hamiltonian formalisms, are presented at the end of part 4.

Part 6 discusses Jean-Marie Souriau’s theory of Thermodynamics
on Lie groups.

Finally, the Euler-Poincaré equation is presented in an Appendix.

Charles-Michel Marle, Université Pierre et Marie Curie Actions of Lie groups and Lie algebras on symplectic and Poisson manifolds. Application to Lagrangian and Hamiltonian systems 5/84



2. The Lagrangian formalism
The principles of Mechanics were stated by the great English
mathematician Isaac Newton (1642–1727) in his book Philosophia
Naturalis Principia Mathematica published in 1687 [27].

On this basis, a little more than a century later, Joseph Louis
Lagrange (1736–1813) in his book Mécanique analytique [16]
derived the equations (today known as the Euler-Lagrange
equations) which govern the motion of a mechanical system made
of any number of material points or rigid material bodies,
eventually submitted to external forces, interacting between
themselves by very general forces.

The configuration space and the space of kinematic states of the
system are, respectively, a smooth n-dimensional manifold N and
its tangent bundle TN, which is 2n-dimensional. In local
coordinates a configuration of the system is determined by the n
coordinates x1, . . . , xn of a point in N, and a kinematic state by
the 2n coordinates x1, . . . , xn, v 1, . . . vn of a vector tangent to N
at some point in N.
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2. The Lagrangian formalism
2.1. The Euler-Lagrange equations
When the mechanical system is conservative, the Euler-Lagrange
equations involve a single real valued function L called the
Lagrangian of the system, defined on the product of the real line R
(spanned by the variable t representing the time) with the
manifold TN of kinematic states of the system. In local
coordinates, the Lagrangian L is expressed as a function of the
2n + 1 variables, t, x1, . . . , xn, v 1, . . . , vn and the Euler-Lagrange
equations have the remarkably simple form

d
dt

(
∂L
∂v i

(
t, x(t), v(t)

))
− ∂L
∂x i

(
t, x(t), v(t)

)
= 0 , 1 ¬ i ¬ n ,

where x(t) stands for x1(t), . . . , xn(t) and v(t) for
v 1(t), . . . , vn(t) with, of course,

v i (t) =
dx i (t)

dt
, 1 ¬ i ¬ n .
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2. The Lagrangian formalism
2.2. Hamilton’s principle of stationary action
The great Irish mathematician William Rowan Hamilton
(1805–1865) observed [8, 9] that the Euler-Lagrange equations can
be obtained by applying the standard techniques of Calculus of
Variations, due to Leonhard Euler (1707–1783) and Joseph Louis
Lagrange, to the action integral

IL(γ) =

∫ t1
t0

L
(

t, x(t), v(t) =
dx(t)

dt

)
dt ,

where γ : [t0, t1]→ N is a smooth curve in N parametrized by the
time t. These equations express the fact that the action integral
IL(γ) is stationary with respect to any smooth infinitesimal
variation of γ with fixed end-points

(
t0, γ(t0)

)
and

(
t1, γ(t1)

)
. This

fact is today called Hamilton’s principle of stationary action.

This principle does not appear explicitly in Lagrange’s book in
which the Euler-Lagrange equations are obtained by a very clever
evaluation of the virtual work of inertial forces for a smooth
infinitesimal variation of the motion.
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2. The Lagrangian formalism
2.3. The Euler-Cartan theorem
The Lagrangian formalism is the use of Hamilton’s principle of
stationary action for the derivation of the equations of motion of a
system. It is widely used in Mathematical Physics, often with more
general Lagrangians involving more than one independent variable
and higher order partial derivatives of dependent variables. For
simplicity I will consider here only the Lagrangians of (maybe time
dependent) conservative mechanical systems.

An intrinsic geometric expression of the Euler-Lagrange equations,
wich does not use local coordinates, was obtained by the great
French mathematician Élie Cartan (1869–1951). Let T ∗N be the
cotangent space to the configuration manifold N (often called the
phase space of the mechanical system), θN be its Liouville 1-form,
LL = dvertL : R× TN → T ∗N be the Legendre map and
E : R× TN → R be the energy function

EL(t, v) = 〈dvertL(t, v), v
〉
− L(t, v) , v ∈ TN .
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The Lagrangian formalism (5)
2.3. The Euler-Cartan theorem (2)
The 1-form on R× TN

$̂L = L∗LθN − EL(t, v)dt

is called the Euler-Poincaré 1-form. The Euler-Cartan theorem, due
to Élie Cartan, asserts that the action integral IL(γ) is stationary at
a smooth parametrized curve γ : [t0, t1]→ N, with respect to
smooth infinitesimal variations of γ with fixed end-points, if and
only if

i
(
d
dt

(
t,
dγ(t)

dt

))
d$̂L

(
t,
dγ(t)

dt

)
= 0 .

In his beautiful book [?], Jean-Marie Souriau uses a slightly
different terminology: for him the odd-dimensional space R× TN
is the evolution space of the system, and the exact 2-form d$̂L on
that space is the Lagrange form. He defines that 2-form in a
setting more general than that of the Lagrangian formalism.

Charles-Michel Marle, Université Pierre et Marie Curie Actions of Lie groups and Lie algebras on symplectic and Poisson manifolds. Application to Lagrangian and Hamiltonian systems 10/84



3. Lagrangian symmetries

Let N be the configuration space of a conservative Lagrangian
mechanical system with a smooth Lagrangian, maybe time
dependent, L : R× TN → R. Let $̂L be the Poincaré-Cartan
1-form on the evolution space R× TN. Several kinds of
symmetries can be defined, which very often are special cases of
infinitesimal symmetries of the Poincaré-Cartan form, which play
an important part in the famous Noether theorem.

3.1. Infinitesimal symmetries of the Poincaré-Cartan form

Definition
An infinitesimal symmetry of the Poincaré-Cartan form $̂L is a
vector field Z on R× TN such that

L(Z )$̂L = 0 ,

L(Z ) denoting the Lie derivative of differential forms with respect
to Z .
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3. Lagrangian symmetries
3.1. Infinitesimal symmetries of the Poincaré-Cartan form (2)

Examples

1 Let us assume that the Lagrangian L does not depend on the
time t ∈ R, i.e. is a smooth function on TN. The vector field

on R× TN denoted by
∂

∂t
, whose projection on R is equal to

1 and whose projection on TN is 0, is an infinitesimal
symmetry of $̂L.

2 Let X be a smooth vector field on N and X be its canonical
lift to the tangent bundle TN. We still assume that L does
not depend on the time t. Moreover we assume that X is an
infinitesimal symmetry of the Lagrangian L, i.e. that
L(X )L = 0. Considered as a vector field on R× TN whose
projection on the factor R is 0, X is an infinitesimal symmetry
of $̂L.
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3. Lagrangian symmetries
3.2. The Noether theorem in Lagrangian formalism

Theorem (E. Noether’s theorem in Lagrangian formalism)
Let Z be an infinitesimal symmetry of the Poincaré-Cartan form
$̂L. For each possible motion γ : [t0, t1]→ N of the Lagrangian
system, the function, defined on R× TN,

i(Z )$̂L

keeps a constant value along the parametrized curve

t 7→
(

t,
dγ(t)

dt

)
.

Example
When the Lagrangian L does not depend on time, application of

Emmy Noether’s theorem to the vector field
∂

∂t
shows that the

energy EL remains constant during any possible motion of the

system, since i
(
∂

∂t

)
$̂L = −EL.
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3. Lagrangian symmetries
3.2. The Noether theorem in Lagrangian formalism (2)

Remark
There exists many generalizations of the Noether theorem. For
example, if instead of being an infinitesimal symmetry of $̂L, i.e.
instead of satisfying

L(Z )$̂L = 0

the vector field Z satisfies

L(Z )$̂L = df ,

where f : R× TM → R is a smooth function, which implies of
course

L(Z )(d$̂L) = 0 ,

the function
i(Z )$̂L − f

keeps a constant value along t 7→
(

t,
dγ(t)

dt

)
.
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3. Lagrangian symmetries
3.3. The Lagrangian momentum map
The Lie bracket of two infinitesimal symmetries of $̂L is also an
infinitesimal symmetry of $̂L. Let us therefore assume that there
exists a finite dimensional Lie algebra of vector fields on R× TN
whose elements are infinitesimal symmetries of $̂L.

Definition
Let ψ : G → A1(R× TN) be a Lie algebras homomorphism of a
finite-dimensional real Lie algebra G into the Lie algebra of smooth
vector fields on R× TN such that, for each X ∈ G, ψ(X ) is an
infinitesimal symmetry of $̂L. The Lie algebras homomorphism ψ
is said to be a Lie algebra action on R× TN by infinitesimal
symmetries of $̂L. The map KL : R× TN → G∗, which takes its
values in the dual G∗ of the Lie algebra G, defined by〈

KL(t, v),X
〉

= i
(
ψ(X )

)
$̂L(t, v) , (t, v) ∈ R× TN ,

is called the Lagrangian momentum of the Lie algebra action ψ.
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3. Lagrangian symmetries

3.3. The Lagrangian momentum map (2)

Corollary (of E. Noether’s theorem)
Let ψ : G → A1(R× TM) be an action of a finite-dimensional real
Lie algebra G on the evolution space R× TN of a conservative
Lagrangian system, by infinitesimal symmetries of the
Poincaré-Cartan form $̂L. For each possible motion γ : [t0, t1]→ N
of that system, the Lagrangian momentum map KL keeps a

constant value along the parametrized curve t 7→
(

t,
dγ(t)

dt

)
.
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3. Lagrangian symmetries
3.3. The Lagrangian momentum map (3)

Example
Let us assume that the Lagrangian L does not depend explicitly on
the time t and is invariant by the canonical lift to the tangent
bundle of the action on N of the six-dimensional group of
Euclidean diplacements (rotations and translations) of the physical
space. The corresponding infinitesimal action of the Lie algebra of
infinitesimal Euclidean displacements (considered as an action on
R× TN, the action on the factor R being trivial) is an action by
infinitesimal symmetries of $̂L. The six components of the
Lagrangian momentum map are the three components of the total
linear momentum and the three components of the total angular
momentum.

Remark
These results are valid without any assumption of hyper-regularity
of the Lagrangian.
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4. The Hamiltonian formalism
The Lagrangian formalism can be applied to any smooth
Lagrangian. Its application yields second order differential
equations on R× TN (in local coordinates, the Euler-Lagrange
equations) which in general are not solved with respect to the
second order derivatives of the unknown functions with respect to
time. The classical existence and unicity theorems for the solutions
of differential equations (such as the Cauchy-Lipschitz theorem)
therefore cannot be applied to these equations.

Under the additional assumption that the Lagrangian is
hyper-regular, a very clever change of variables discovered by
William Rowan Hamilton 1 allows a new formulation of these
equations in the framework of symplectic geometry. The
Hamiltonian formalism is the use of these new equations. It was
later generalized independently of the Lagrangian formalism.

1Lagrange obtained however Hamilton’s equations before Hamilton, but only
in a special case, for the slow “variations of constants” such as the orbital
parameters of planets in the solar system.

Charles-Michel Marle, Université Pierre et Marie Curie Actions of Lie groups and Lie algebras on symplectic and Poisson manifolds. Application to Lagrangian and Hamiltonian systems 18/84



4. The Hamiltonian formalism
4.1. Hyper-regular Lagrangians
Assume that for each fixed value of the time t ∈ R, the map
v 7→ LL(t, v) is a smooth diffeomorphism of the tangent bundle
TN onto the cotangent bundle T ∗N. Equivalent assumption: the
map (idR,LL) : (t, v) 7→

(
t,LL(t, v)

)
is a smooth diffeomorphism

of R× TN onto R× T ∗N. The Lagrangian L is then said to be
hyper-regular. The equations of motion can be written on
R× T ∗N instead of R× TN.

Let HL : R× T ∗N → R be the function, called the Hamiltonian
associated to the Lagrangian L,

HL(t, p) = EL ◦ (idR,LL)−1(t, p) , t ∈ R , p ∈ T ∗N ,

EL : R× TN → R being the energy function. The Poincaré-Cartan
1-form $̂L on R× TN is the pull-back, by the diffeomorphism
(idR,LL) : R× TN → R× T ∗N, of the 1-form on R× T ∗N

$̂H = θN − Hdt ,

where θN is the Liouville 1-form on T ∗N.
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4. The Hamiltonian formalism
4.2. Presymplectic manifolds
The 1-form $̂HL on R× T ∗N is called the Poincaré-Cartan 1-form
in Hamiltonian formalism. It is related to the Poincaré-Cartan
1-form $̂L on R× TN, called the Poincaré-Cartan 1-form in
Lagrangian formalism, by

$̂L = (idR,LL)∗$̂HL .

The exterior derivatives d$̂L and d$̂HL of the Poincaré-Cartan
1-forms in the Lagrangian and Hamiltonian formalisms both are
presymplectic 2-forms on the odd-dimensional manifolds R× TN
and R× T ∗N, respectively. At any point of these manifolds, the
kernels of these closed 2 forms are 1-dimensional, therefore
determine a foliation into smooth curves of these manifolds. The
Euler-Cartan theorem shows that each of these curves is a possible
motion of the system, described either in the Lagrangian
formalism, or in the Hamiltonian formalism, respectively.
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4. The Hamiltonian formalism

4.2. Presymplectic manifolds (2)
The set of all possible motions of the system, called by Jean-Marie
Souriau the manifold of motions of the system, is described in the
Lagrangian formalism by the quotient of the Lagrangian evolution
space R× TM by its foliation into curves determined by ker d$̂L,
and in the Hamiltonian formalism by the quotient of the
Hamiltonian evolution space R× T ∗M by its foliation into curves
determined by ker d$̂HL . Both are (maybe non-Hausdorff)
symplectic manifolds, the projections on these quotient manifolds
of the presymplectic forms d$̂L and d$̂h both being symplectic
forms. Of course the diffeomorphism
(idR,LL) : R× TN → R× T ∗N projects onto a
symplectomorphism between the Lagrangian and Hamiltonian
descriptions of the manifold of motions of the system.
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4. The Hamiltonian formalism
4.3. The Hamiton equation
Let ψ : [t0, t1]→ T ∗N be the map

ψ(t) = LL
(

t,
dγ(t)

dt

)
.

Since d$̂H = dθN − dHL ∧ dt, the parametrized curve t 7→ γ(t) is
a motion of the system if and only if the parametrized curve
t 7→ ψ(t) satisfies both

i
(
dψ(t)

dt

)
dθN = −dHL t ,

d
dt

(
HL
(
t, ψ(t)

))
=
∂HL
∂t

(
t, ψ(t)

)
,

where dHL t = dHL −
∂HL
∂t
dt is the differential of the function

HL t : T ∗N → R in which the time t is considered as a parameter
with respect to which there is no differentiation.
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4. The Hamiltonian formalism
4.3. The Hamilton equation (2)
The first equation

i
(
dψ(t)

dt

)
dθN = −dHL t

is the Hamilton equation. In local coordinates x1, . . . , xn, p1, . . . pn
on T ∗N associated to the local coordinates x1, . . . , xn on N, it is
expressed as 

dx i (t)

dt
=
∂HL(t, x , p)

∂pi
,

dpi (t)

dt
= −∂HL(t, x , p)

∂x i
,

1 ¬ i ¬ n .

The second equation

d
dt

(
HL
(
t, ψ(t)

))
=
∂HL
∂t

(
t, ψ(t)

)
is the energy equation. It is automatically satisfied when the
Hamilton equation is satisfied.
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4. The Hamiltonian formalism

4.3. The Hamilton equation (3)
The 2-form dθN is a symplectic form on the cotangent bundle
T ∗N, called its canonical symplectic form. We have shown that
when the Lagrangian L is hyper-regular, the equations of motion
can be written in three equivalent manners:

1 as the Euler-Lagrange equations on R× TM,
2 as the equations given by the kernels of the presymplectic

forms d$̂L or d$̂HL which determine the foliations into curves
of the evolution spaces R× TM in the Lagrangian formalism,
or R× T ∗M in the Hamiltonian formalism,

3 as the Hamilton equation associated to the Hamiltonian HL
on the symplectic manifold (T ∗N, dθN), often called the
phase space of the system.
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4. The Hamiltonian formalism
4.4. The Tulczyjew isomorphisms
Around 1974, W.M. Tulczyjew [35, 36] discovered 2 two
remarkable vector bundles isomorphisms αN : TT ∗N → T ∗TN and
βN : TT ∗N → T ∗T ∗N.

The first one αN is an isomorphism of the bundle
(TT ∗N,TπN ,TN) onto the bundle (T ∗TN, πTN ,TN), while the
second βN is an isomorphism of the bundle (TT ∗N, τT∗N ,T ∗N)
onto the bundle (T ∗T ∗N, πT∗N ,T ∗N).

T ∗T ∗N

πT∗N
��

TT ∗N
βNoo

τT∗Nyy TπN %%

αN // T ∗TN

πTN
��

T ∗N

πN
%%

TN

τN
yy

N
2βN was probably known long before 1974, but I believe that αN , much more

hidden, was noticed by Tulczyjew for the first time.
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4. The Hamiltonian formalism

4.4. The Tulczyjew isomorphisms (2)
Since they are the total spaces of cotangent bundles, the manifolds
T ∗TN and T ∗T ∗N are endowed with the Liouville 1-forms θTN
and θT∗N , and with the canonical symplectic forms dθTN and
dθT∗N , respectively.

Using the isomorphisms αN and βN , we can therefore define on
TT ∗N two 1-forms α∗NθTN and β∗NθT∗N , and two symplectic
2-forms α∗N(dθTN) and β∗N(dθT∗N).

The very remarkable property of the isomorphisms αN and βN is
that the two symplectic forms so obtained on TT ∗N are equal!

α∗N(dθTN) = β∗N(dθT∗N) .

The 1-forms α∗NθTN and β∗NθT∗N are not equal, their difference is
the differential of a smooth function.
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4. The Hamiltonian formalism

4.4. The Tulczyjew isomorphisms (3)
Let L : TN → R and H : T ∗ → R be two smooth real valued
functions, defined on TN and on T ∗N, respectively.

The graphs dL(TN) and dH(T ∗N) of their differentials are
Lagrangian submanifolds of the symplectic manifolds
(T ∗TN,dθTN) and (T ∗T ∗N, dθT∗N).

Their pull-backs α−1
N

(
dL(TN)

)
and β−1

N

(
dH(T ∗N)

)
by the

symplectomorphisms αN and βN are therefore two Lagrangian
submanifolds of the manifold TT ∗N endowed with the symplectic
form α∗N(dθTN), which is equal to the symplectic form β∗N(dθT∗N).

The following theorem enlightens some aspects of the relationships
between the Hamiltonian and the Lagrangian formalisms.
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4. The Hamiltonian formalism
4.4. The Tulczyjew isomorphisms (4)

Theorem (W.M. Tulczyjew)
Let XH : T ∗N → TT ∗N the Hamiltonian vector field on the
symplectic manifold (T ∗N, dθN) associated to the Hamiltonian
H : T ∗N → R, defined by i(XH)dθN = −dH. Then

XH(T ∗N) = β−1
N

(
dH(T ∗N)

)
.

Moreover, the equality

α−1
N

(
dL(TN)

)
= β−1
N

(
dH(T ∗N)

)
if and only if the Lagrangian L is hyper-regular and such that

dH = d
(
EL ◦ L−1

L

)
,

where LL : TN → T ∗N is the Legendre map and EL : TN → R the
energy associated to the Lagrangian L.
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4. The Hamiltonian formalism

4.4. The Tulczyjew isomorphisms (5)

When L is not hyper-regular, α−1
N

(
dL(TN)

)
still is a Lagrangian

submanifold of the symplectic manifold
(
TT ∗N, α∗N(dθTN)

)
, but it

is no more the graph of a smooth vector field XH defined on T ∗N.
Tulczyjew proposes to consider this Lagrangian submanifold as an
implicit Hamilton equation on T ∗N.

These results can be extended to Lagrangians and Hamiltonians
which may depend on time.
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4. The Hamiltonian formalism

4.5. The Hamiltonian formalism on symplectic manifolds
In pure mathematics as well as in applications of mathematics to
Mechanics and Physics, symplectic manifolds other than cotangent
bundles are encountered. A theorem due to the french
mathematician Gaston Darboux (1842–1917) asserts that any
symplectic manifold (M, ω) is of even dimension 2n and is locally
isomorphic to the cotangent bundle to a n-dimensional manifold: in
a neighbourhood of each of its point there exist local coordinates
(x1, . . . , xn, p1, . . . , pn) with which the symplectic form ω is
expressed exactly as the canonical symplectic form of a cotangent
bundle:

ω =
n∑
i=1

dpi ∧ dx i .

Charles-Michel Marle, Université Pierre et Marie Curie Actions of Lie groups and Lie algebras on symplectic and Poisson manifolds. Application to Lagrangian and Hamiltonian systems 30/84



4. The Hamiltonian formalism
4.5. The Hamiltonian formalism on symplectic manifolds (2)
Let (M, ω) be a symplectic manifold and H : R×M → R a smooth
function, said to be a time-dependent Hamiltonian. It determines a
time-dependent Hamiltonian vector field XH on M, such that

i(XH)ω = −dHt ,

Ht : M → R being the function H in which the variable t is
considered as a parameter with respect to which no differentiation
is made.

The Hamilton equation determined by H is the differential equation

dψ(t)

dt
= XH

(
t, ψ(t)

)
.

The Hamiltonian formalism can therefore be applied to any
smooth, maybe time dependent Hamiltonian on M, even when
there is no associated Lagrangian.
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4. The Hamiltonian formalism
4.6. The Hamiltonian formalism on Poisson manifolds
The Hamiltonian formalism is not limited to symplectic manifolds:
it can be applied, for example, to Poisson manifolds [20].

Definition
A Poisson manifold is a smooth manifold P whose algebra of
smooth functions C∞(P,R) is endowed with a bilinear
composition law, called the Poisson bracket, which associates to
any pair (f , g) of smooth functions on P another smooth function
denoted by {f , g}, that composition satisfying the three properties

1 it is skew-symmetric,
{g , f } = −{f , g},

2 it satisfies the Jacobi identity{
f , {g , h}

}
+
{

g , {h, f }
}

+
{

h, {f , g}
}

= 0,
3 it satisfies the Leibniz identity

{f , gh} = {f , g}h + g{f , h}.
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4. The Hamiltonian formalism
4.6. The Hamiltonian formalism on Poisson manifolds (2)
On a Poisson manifold P, the Poisson bracket {f , g} of two
smooth functions f and g can be expressed by means of a smooth
field of bivectors Λ:

{f , g} = Λ(df ,dg) , f and g ∈ C∞(P,R) ,

called the Poisson bivector field of P. The considered Poisson
manifold is denoted by (P,Λ). The Poisson bivector field Λ satisfies

[Λ,Λ] = 0 ,

where the bracket [ , ] in the left hand side is the
Schouten-Nijenhuis bracket.

It determines a vector bundle morphism Λ] : T ∗P → TP, defined
by

Λ(η, ζ) =
〈
ζ,Λ](η)

〉
,

where η and ζ ∈ T ∗P are two covectors attached to the same
point in P.
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4. The Hamiltonian formalism
4.6. The Hamiltonian formalism on Poisson manifolds (3)
Let (P,Λ) be a Poisson manifold. A (maybe time-dependent)
vector field on P can be associated to each (maybe
time-dependent) smooth function H : R× P → R. It is called the
Hamiltonian vector field associated to the Hamiltonian H, and
denoted by XH . Its expression is

XH(t, x) = Λ](x)
(
dHt(x)

)
,

where dHt(x) = dH(t, x)− ∂H(t, x)

∂t
dt is the differential of the

function deduced from H by considering t as a parameter with
respect to which no differentiation is made.

The Hamilton equation determined by the (maybe
time-dependent) Hamiltonian H is

dϕ(t)

dt
= XH(

(
t, ϕ(t)

)
= Λ](dHt)

(
ϕ(t)

)
.
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5. Hamiltonian symmetries
5.1. Presymplectic, symplectic and Poisson diffeomorphisms
Let M be a manifold endowed with some structure, which can be
either

a presymplectic structure, determined by a presymplectic
form, i.e., a 2-form ω which is closed (dω = 0),

a symplectic structure, determined by a symplectic form ω,
i.e., a 2-form ω which is both closed (dω = 0) and
nondegenerate (kerω = {0}),

a Poisson structure, determined by a smooth Poisson bivector
field Λ satisfying [Λ,Λ] = 0.

Definition
A presymplectic (resp. symplectic, resp. Poisson) diffeomorphism of
a presymplectic (resp., symplectic, resp. Poisson) manifold (M, ω)
(resp. (M,Λ)) is a smooth diffeomorphism f : M → M such that
f ∗ω = ω (resp. f ∗Λ = Λ).
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5. Hamiltonian symmetries
5.2. Presymplectic, symplectic and Poisson vector fields

Definition
A smooth vector field X on a presymplectic (resp. symplectic, resp.
Poisson) manifold (M, ω) (resp. (M,Λ)) is said to be a
presysmplectic (resp. symplectic, resp. Poisson) vector field if
L(X )ω = 0 (resp. if L(X )Λ = 0), where L(X ) denotes the Lie
derivative of forms or mutivector fields with respect to X .

Definition
Let (M, ω) be a presymplectic or symplectic manifold. A smooth
vector field X on M is said to be Hamiltonian if there exists a
smooth function H : M → R, called a Hamiltonian for X , such that

i(X )ω = −dH .

Not any smooth function on a presymplectic manifold can be a
Hamiltonian.
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5. Hamiltonian symmetries
5.2. Presymplectic, symplectic and Poisson vector fields (2)

Definition
Let (M,Λ) be a Poisson manifold. A smooth vector field X on M
is said to be Hamiltonian if there exists a smooth function
H ∈ C∞(M,R), called a Hamiltonian for X , such that
X = Λ](dH). An equivalent definition is that

i(X )dg = {H, g} for anyg ∈ C∞(M,R) ,

where {H, g} = Λ(dH,dg) denotes the Poisson bracket of the
functions H and g .

On a symplectic or a Poisson manifold, any smooth function can
be a Hamiltonian.

Proposition
A Hamiltonian vector field on a presymplectic (resp. symplectic,
resp. Poisson) manifold automatically is a presymplectic (resp.
symplectic, resp. Poisson) vector field.
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5. Hamiltonian symmetries
5.3. Lie algebras and Lie groups actions
An action on the left (resp. an action on the right) of a Lie group
G on a smooth manifold M is a smooth map Φ : G ×M → M
(resp. a smooth map Ψ : M × G → M) such that

for each fixed g ∈ G , the map Φg : M → M defined by
Φg (x) = Φ(g , x) (resp. the map Ψg : M → M defined by
Ψg (x) = Ψ(x , g)) is a smooth diffeomorphism of M,

Φe = idM (resp. Ψe = idM), e being the neutral element of G ,

for each pair (g1, g2) ∈ G × G , Φg1 ◦ Φg2 = Φg1g2 (resp.
Ψg1 ◦Ψg2 = Ψg2g1).

An action of a Lie algebra G on a smooth manifold M is a Lie
algebras morphism of G into the Lie algebra A1(M) of smooth
vector fields on M, i.e. a map ψ : G → A1(M) which associates to
each X ∈ G a smooth vector field ψ(X ) on M such that for each
pair (X ,Y ) ∈ G × G, ψ

(
[X ,Y ]

)
=
[
ψ(X ), ψ(Y )

]
.
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5. Hamiltonian symmetries
5.3. Lie algebras and Lie groups actions (2)
An action Ψ, either on the left or on the right, of a Lie group G on
a smooth manifold M automatically determines an action of its Lie
algebra G on that manifold, which associates to each X ∈ G the
vector field ψ(X ) on M defined by

ψ(X )(x) =
d
ds
(
(Ψexp(sX )(x)

) ∣∣
s=0 , x ∈ M ,

with the following convention: ψ a Lie algebras homomorphism
when we take for Lie algebra G of the Lie group G the Lie algebra
or right invariant vector fields on G if Ψ is an action on the left,
and the Lie algebra of left invariant vector fields on G if Ψ is an
action on the right.

When M is a presymplectic (resp. symplectic, resp. Poisson)
manifold, an action Ψ of a Lie group on M is called a presymplectic
(resp. symplectic, resp. Poisson) action if for each g ∈ G , Ψg is a
presymplectic (resp. symplectic, resp. Poisson) diffeomorphism of
M. Similar definitions hold for Lie algebras actions.
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5. Hamiltonian symmetries

5.4. Hamiltonian actions

Definitions
An action ψ of a Lie algeba G on a presymplectic or symplectic
manifold (M, ω), or on a Poisson manifold (M,Λ), is said to be
Hamiltonian if for each X ∈ G, the vector field ψ(X ) on M is
Hamiltonian.

An action Ψ (either on the left or on the right) of a Lie group G
on a presymplectic or symplectic manifold (M, ω), or on a Poisson
manifold (M,Λ), is said to be Hamiltonian if that action is
presymplectic, or symplectic, or Poisson (according to the structure
of M), and if in addition the associated action of the Lie algebra G
of G is Hamiltonian.
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5. Hamiltonian symmetries

5.5. Momentum maps of a Hamiltonian action

Proposition
Let ψ be a Hamiltonian action of a finite-dimensional Lie algebra G
on a presymplectic, symplectic or Poisson manifold (M, ω) or
(M,Λ). There exists a smooth map J : M → G∗, taking its values
in the dual space G∗ of the Lie algebra G, such that for each
X ∈ G the Hamiltonian vector field ψ(X ) on M admits as
Hamiltonian the function JX : M → R, defined by

JX (x) =
〈
J(x),X

〉
, x ∈ M .

The map J is called a momentum map for the Lie algebra action
ψ. When ψ is the action of the Lie algebra G of a Lie group G
associated to a Hamiltonian action Ψ of a Lie group G , J is called
a momentum map for the Hamiltonian Lie group action Ψ.
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5. Hamiltonian symmetries

5.5. Momentum maps of a Hamiltonian action (2)
The momentum map J is not unique:

when (M, ω) is a connected presymplectic or symplectic
manifold, J is determined up to addition of an arbitrary
constant element in G∗;
when (M,Λ) is a connected Poisson manifold, the momentum
map J is determined up to addition of an arbitrary G∗-valued
smooth map which, coupled with any X ∈ G, yields a Casimir
of the Poisson algebra of (M,Λ), i.e. a smooth function on M
whose Poisson bracket with any other smooth function on
that manifold is the function identically equal to 0.
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5. Hamiltonian symmetries
5.6. Noether’s theorem in Hamiltonian formalism

Theorem (Noether’s theorem in Hamiltonian formalism)
Let XH and Z be two Hamiltonian vector fields on a presymplectic
or symplectic manifold (M, ω), or on a Poisson manifold (M,Λ),
which admit as Hamiltonians the smooth functions H and g on the
manifold M. The function H remains constant on each integral
curve of Z if and only if g remains constant on each integral curve
of XH .

Corollary (of Noether’s theorem in Hamiltonian formalism)
Let ψ : G → A1(M) be a Hamiltonian action of a
finite-dimensional Lie algebra G on a presymplectic or symplectic
manifold (M, ω), or on a Poisson manifold (M,Λ), and let
J : M → G∗ be a momentum map of this action. Let XH be a
Hamiltonian vector field on M admitting as Hamiltonian a smooth
function H. If for each X ∈ G we have i

(
ψ(X )

)
(dH) = 0, the

momentum map J remains constant on each integral curve of XH .
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5. Hamiltonian symmetries
5.7. Symplectic cocycles

Theorem (J.M. Souriau)
Let Φ be a Hamiltonian action (either on the left or on the right)
of a Lie group G on a symplectic manifold (M, ω) and J : M → G∗
be a moment map of this action. There exists an affine action A
(either on the left or on the right) of the Lie group G on the dual
G∗ of its LIe algebra G such that the momentum map J is
equivariant with respect to the actions of G Φ on M and A on G∗:

J ◦ Φg (x) = Ag ◦ J(x) for all g ∈ G , x ∈ M .

The action A can be written, with g ∈ G and ξ ∈ G∗,{
A(g , ξ) = Ad∗g−1(ξ) + θ(g) if Φ is an action on the left,

A(ξ, g) = Ad∗g (ξ)− θ(g−1) if Φ is an action on the right.
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5. Hamiltonian symmetries

5.7. Symplectic cocycles (2)

Proposition
Under the assumptions and with the notations of the previous
theorem, the map θ : G → G∗ is a cocycle of the Lie group G with
values in G∗, for the coadjoint representation. It means that is
satisfies, for all g and h ∈ G ,

θ(gh) = θ(g) +Ad∗g−1

(
θ(h)

)
.

More precisely θ is a symplectic cocycle. It means that its
differential Teθ : TeG ≡ G → G∗ at the neutral element e ∈ G can
be considered as a skew-symmetric bilinear form on G:

Θ(X ,Y ) =
〈
Teθ(X ),Y

〉
= −

〈
Teθ(Y ),X

〉
.
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5. Hamiltonian symmetries
5.7. Symplectic cocycles (3)
The bilinear form Θ on the Lie algebra G is a symplectic cocycle of
that Lie algebra. It means that it is skew-symmetric and satisfies,
for all X , Y and Z ∈ G,

Θ
(
[X ,Y ],Z

)
+ Θ

(
[Y ,Z ],X

)
+ Θ

(
[Z ,X ],Y

)
= 0 .

Proposition
The composition law which associates to each pair (f , g) of
smooth real-valued functions on G∗ the function {f , g}Θ given by

{f , g}Θ(x) =
〈
x , [df (x), dg(x)]

〉
−Θ

(
df (x), dg(x)

)
, x ∈ G∗ ,

(G being identified with its bidual G∗∗), determines a Poisson
structure on G∗, and the momentum map J : M → G∗ is a Poisson
map, M being endowed with the Poisson structure associated to its
symplectic structure.
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5. Hamiltonian symmetries

5.7. Symplectic cocycles (4)
When the momentum map J is replaced by another momentum
map J ′ = J + µ, where µ ∈ G∗ is a constant, the symplectic Lie
group cocycle θ and the symplectic Lie algebra cocycle Θ are
replaced by θ′ and Θ′, respectively, given by

θ′(g) = θ(g) + µ−Ad∗g−1(µ) , g ∈ G ,

Θ′(X ,Y ) = Θ(X ,Y ) +
〈
µ, [X ,Y ]

〉
, X and Y ∈ G .

These formulae show that θ′ − θ and Θ′ −Θ are symplectic
coboudaries of the Lie group G and the Lie algebra G. In other
words, the cohomology classes of the cocycles θ and Θ only
depend on the Hamiltonian action Φ of G on the symplectic
manifold (M, ω).
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5. Hamiltonian symmetries
5.8. Fist application: symmetries of the phase space
Hamiltonian Symmetries are often used for the search of solutions
of the equations of motion of mechanical systems. The symmetries
considered are those of the phase space of the mechanical system.
This space is very often a symplectic manifold, either the cotangent
bundle to the configuration space with its canonical symplectic
structure, or a more general symplectic manifold. Sometimes, after
some simplifications, the phase space is a Poisson manifold.

The Marsden-Weinstein reduction procedure [25, 26] or one of its
generalizations [28] is the most often method used to facilitate the
determination of solutions of the equations of motion. In a first
step, a possible value of the momentum map is chosen and the
subset of the phas space on which the momentum map takes this
value is determined. In a second step, that subset (when it is a
smooth manifold) is quotiented by its isotropic foliation. The
quotient manifold is a symplectic manifold of a dimension smaller
than that of the original phase space, and one has an easier to
solve Hamiltonian system on that reduced phase space.Charles-Michel Marle, Université Pierre et Marie Curie Actions of Lie groups and Lie algebras on symplectic and Poisson manifolds. Application to Lagrangian and Hamiltonian systems 48/84



5. Hamiltonian symmetries

5.8. First application: symmetries of the phase space (2)
When Hamiltonian symmetries are used for the reduction of the
dimension of the phase space of a mechanical system, the
symplectic cocycle of the Lie group of symmetries action, or of the
Lie algebra of symmetries action, is almost always the zero cocycle.

For example, if the goup of symmetries is the canonical lift to the
cotangent bundle of a group of symmetries of the configuration
space, not only the canonical symplectic form, but the Liouville
1-form of the cotangent bundle itself remains invariant under the
action of the symmetry group, and this fact implies that the
symplectic cohomology class of the action is zero.

A completely different way of using symmetries was initiated by
Jean-Marie Souriau, who proposed to consider the symmetries of
the manifold of motions of the mechanical system.
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5. Hamiltonian symmetries
5.9. Second application: symmetries of the space of motions
Jean-Marie Souriau observed that the Lagrangian and Hamiltonian
formalisms, in their usual formulations, involve the choice of a
particular reference frame, in which the motion is described. This
choice destroys a part of the natural symmetries of the system.

For example, in classical (non-relativistic) Mechanics, the natural
symmetry group of an isolated mechanical system must contain
the symmetry group of the Galilean space-time, called the Galilean
group. This group is of dimension 10. It contains not only the
group of Euclidean displacements of space which is of dimension 6
and the group of time translations which is of dimension 1, but the
group of linear changes of Galilean refernce frames which is of
dimension 3.

If we use the Lagrangian formalism or the Hamiltonian formalism,
the Lagrangian or the Hamiltonian of the system depends on the
reference frame: it is not invariant with respect to linear changes of
Galilean reference frames.
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5. Hamiltonian symmetries
5.9. Second application: symmetries of the space of motions (2)
It may seem strange to consider the set of all possible motions of a
system, which is unknown as long as we have not determined all
these possible motions. One may ask if it is really useful when we
want to determine not all possible motions, but only one motion
with prescribed initial data, since that motion is just one point of
the (unknown) manifold of motion!

Souriau’s answers to this objection are the following.

1. We know that the manifold of motions has a symplectic
structure, and very often many things are known about its
symmetry properties.

2. In classical (non-relativistic) mechanics, there exists a natural
mathematical object which does not depend on the choice of a
particular reference frame (even if the decriptions given to that
object by different observers depend on the reference frame used
by these observers): it is the evolution space of the system.
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5. Hamiltonian symmetries
5.9. Second application: symmetries of the space of motions (3)
The knowledge of the equations which govern the system’s
evolution allows the full mathematical description of the evolution
space, even when these equations are not yet solved.

Moreover, the symmetry properties of the evolution space are the
same as those of the manifold of motions.

For example, the evolution space of a classical mechanical system
with configuration manifold N is

1 in the Lagrangian formalism, the space R× TN endowed with
the presymplectic form d$̂L, whose kernel is of dimension 1
when the Lagrangian L is hyper-regular,

2 in the Hamiltonian formalism, the space R× T ∗N with the
presymplectic form d$̂H , whose kernel is also of dimension 1.

The Poincaré-Cartan 1-form $̂L in the Lagrangian formalism or
$̂H in the Hamiltonian formalism depend on the choice of a
particular reference frame, made for using the Lagrangian or the
Hamiltonian formalism.
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5. Hamiltonian symmetries
5.9. Second application: symmetries of the space of motions (4)
But their exterior differentials, the presymplectic forms d$̂L or
d$̂H , do not depend on that choice, modulo a simple change of
variables in the evolution space.

Souriau defined this presymplectic form in a framework more
general than those of Lagrangian or Hamiltonian formalisms, and
called it the Lagrange form. In this more general setting, it may
not be an exact 2-form. Souriau proposed as a new Principle, the
assumption that it always projects on the space of motions of the
systems as a symplectic form, even in Relativistic Mechanics in
which the definition of an evolution space is not clear. He called
this new principle the Maxwell Principle.

V. Bargmann proved that the symplectic cohomology of the
Galilean group is of dimension 1, and Souriau proved that the
cohomology class of its action on the manifold of motions of an
isolated classical (non-relativistic) mechanical system can be
identified with the total mass of the system.
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6. Souriau thermodynamics on Lie groups
6.1. Statistical states
Let N be the configuration manifold of a Lagrangian system whose
Lagrangian L : TN → R is hyper-regular and does not explicitly
depend on the time t. Let H : T ∗N → R be the corresponding
Hamiltonian and (M, ω) be the manifold of motions of the system.
In the Hamiltonian formalism, a motion ϕ ∈ M is a smooth curve
t 7→ ϕ(t) defined on an open interval of R, with values in T ∗N.
For each t ∈ R, the map ϕ 7→ ϕ(t) is a symplectomorphism of the
open subset of (M, ω) made by all motions defined on an interval
containing t, onto an open subset of the phase space (T ∗N, dθN).
For simplicity I will assume in the following that this
symplectomorphism is a global symplectomorphism of (M, ω) onto
(T ∗N, dθN). In other words I assume that all the motions of the
system are defined for all values of the time t ∈ R.

Definition
A statistical state of the mechanical system is a probability
measure on the symplectic manifold of motions (M, ω).
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6. Souriau thermodynamics on Lie groups
6.1. Statistical states (2)
For simplicity I only consider in what follows statistical states
which can be represented by a smooth density of probability
ρ : M → [0,+∞[ with respect to natural volume form ωn of the
symplectic manifold of motions (M, ω) (with n = dim N). We must
therefore have ∫

M
ρ(ϕ)ωn(ϕ) = 1 .

With each statistical state with a smooth probability density ρ let
us associate the number

s(ρ) = −
∫
M

log
(
ρ(ϕ)

)
ρ(ϕ)ωn(ϕ) ,

with the convention that if x ∈ M is such that ϕ(x) = 0,
log
(
ϕ(x)

)
ϕ(x) = 0.

The Hamiltonian H : T ∗N → R remains constant along each
motion of the system.
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6. Souriau thermodynamics on Lie groups
6.2. Action of the group of time translations
Therefore we can define on the symplectic manifold of motions
(M, ω) a smooth function E : M → R, called the energy function

E (ϕ) = H
(
ϕ(t)

)
for all t ∈ R , ϕ ∈ M .

The Hamiltonian vector field XE on M is the infinitesimal
generator of the 1-dimensional group of time translations. A time
translation ∆t : R→ R is a map ∆t : R→ R, ∆t(t) = t + ∆t.
The group of time translations can be identified with R. It acts on
the manifold of motions M by the action ΦE , such that for each
time translation ∆t and each motion ϕ, ΦE∆t(ϕ) is the motion

t 7→ ΦE∆t(ϕ)(t) = ϕ(t + ∆t) .

Following the ideas of Ludwig Boltzmann (1844–1906), more
recently reformulated by E.T. Jaynes [12] and G.W. Mackey [21],
J.-M. Souriau [30] proposed the following definition of a
thermodynamic equilibrium state.
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6. Souriau thermodynamics on Lie groups
6.3. Thermodynamic equilibrium state

Definition
A thermodynamic equilibrium state of the mechanical system, for a
given value mean value Q of the energy function E , is a statistical
state with a smooth probability density ρ  0 satisfying the two
constraints ∫

M
ρ(ϕ)ωn(ϕ) = 1 ,∫

M
ρ(ϕ)E (ϕ)ωn(ϕ) = Q ,

which, moreover, is such that the integral

s(ρ) = −
∫
M

log
(
ρ(ϕ)

)
ρ(ϕ)ωn(ϕ)

is stationary with respect to all infinitesimal smooth variations of
the probability density ρ  0 submitted to these two constraints.

Charles-Michel Marle, Université Pierre et Marie Curie Actions of Lie groups and Lie algebras on symplectic and Poisson manifolds. Application to Lagrangian and Hamiltonian systems 57/84



6. Souriau thermodynamics on Lie groups

6.3. Thermodynamic equilibrium state (2)
By using the standard techniques of calculus of variations, Souriau
proves that for each mean value Q of the energy function for which
the involved integrals are normally convergent, there exists a
unique thermodynamic equilibrium state whose probability density
ρ is given by

ρ(ϕ) = exp
(
−Ψ−Θ.E (ϕ)

)
,

where Ψ and Θ are two constants which satisfy the two equalities

Ψ = log
(∫
M

exp
(
−Θ.E (ϕ)

)
ωn(ϕ)

)
,

Q =

∫
M

E (ϕ) exp
(
−Θ.E (ϕ)

)
ωn(ϕ)∫

M
exp
(
−Θ.E (ϕ)

)
ωn(ϕ)

.
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6. Souriau thermodynamics on Lie groups
6.3. Thermodynamic equilibrium state (3) Souriau proves that
these two equalities imply that Ψ and Q are smooth functions of
the variable Θ, and that

Q(Θ) = −dΨ(Θ)

dΘ
.

Moreover, by using convexity arguments, he proves that when Q is
given, there is at most one corresponding value of Θ, so that Ψ(Θ)
and the probability density ρ are uniquely determined. Moreover, he
proves that the value of s(ρ) is a strict maximum, with respect to
smooth variations of ρ satisfying the two above stated constraints.
That maximum is a function S of the variable Θ given by

S(Θ) = Ψ(Θ) + Θ.Q(Θ) , therefore

dS(Θ)

dΘ
= −Θ

d2Ψ(Θ)

dΘ2 .
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6. Souriau thermodynamics on Lie groups

6.3. Thermodynamic equilibrium state (4)

Souriau proves that
d2Ψ(Θ)

dΘ2 > 0, therefore Ψ is a convex function.

Physical intepretation of these results: Θ is related to the absolute
temperature T by

Θ =
1

kT
,

where k is the Boltzmann constant, S is the entropy and Q the
internal energy of the system. By this means Souriau recovers the
Maxwell distribution of velocities of particles in a perfect gas.
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6. Souriau thermodynamics on Lie groups

6.4. Generalization for a Hamiltonian Lie group action
The energy function E on the symplectic manifold of motions
(M, ω) can be seen as the momentum map of the Hamiltonian
action ΦE on that manifold of the one-dimensional Lie group of
time translations.

Souriau proposes a natural generalization of the definition of a
thermodynamic equilibrium state in which a (maybe
multi-dimensional and maybe non-Abelian) Lie group G acts, by a
Hamiltonian action Φ, on that symplectic manifold. Let G be the
Lie algebra of G , G∗ be its dual space and J : M → G∗ be a
momentum map of the action Φ. In [30], he calls it an equilibrium
state allowed by the group G and in his later papers and book
[31, 32] a Gibbs state of the Lie group G , probably because it is
not so clear whether physically such a state really is an equilibrium.
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6. Souriau thermodynamics on Lie groups
6.4. Generalization for a Hamiltonian Lie group action (2)

Definition
A Gibbs state of a connected Lie group G acting on a connected
symplectic manifold (M, ω) by a Hamiltonian action Φ, with a
momentum map J : M → G∗, for a given value mean value Q ∈ G∗
of that momentum map, is a statistical state with a smooth
probability density ρ  0 satisfying the two constraints∫

M
ρ(ϕ)ωn(ϕ) = 1 ,

∫
M
ρ(ϕ)J(ϕ)ωn(ϕ) = Q ,

which, moreover, is such that the integral

s(ρ) = −
∫
M

log
(
ρ(ϕ)

)
ρ(ϕ)ωn(ϕ)

is stationary with respect to all infinitesimal smooth variations of
the probability density ρ  0 submitted to these two constraints.
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6. Souriau thermodynamics on Lie groups
6.4. Generalization for a Hamiltonian Lie group action (3)
By the same calculations as those made for a thermodynamic
equilibrium, Souriau obtains the following results. For each value Q
of the momentum map J for which the involved integrals are
normally convergent, there exists a unique Gibbs state whose
probability density ρ is given by

ρ(ϕ) = exp
(
−Ψ−

〈
Θ, J(ϕ)

〉)
,

where Ψ is a real constant and Θ a constant which takes its value
in the Lie algebra G, considered as the dual of G∗, which satisfy
the two equalities

Ψ = log
(∫
M

exp
(
−
〈
Θ, J(ϕ)

〉)
ωn(ϕ)

)
,

Q =

∫
M

J(ϕ) exp
(
−
〈
Θ,E (ϕ)

〉)
ωn(ϕ)∫

M
exp
(
−
〈
Θ, J(ϕ)

〉)
ωn(ϕ)

.
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6. Souriau thermodynamics on Lie groups
6.4. Generalization for a Hamiltonian Lie group action (4) Souriau
proves that these two equalities imply that Ψ and Q are smooth
functions of the variable Θ ∈ G, which take their value,
respectively, in R and in G∗, and that

Q(Θ) = −DΨ(Θ) ,

where DΨ is the first differential of Ψ : G → R. Exactly as for an
equilibrium state, when Q is given, there is at most one
corresponding value of Θ, so that Ψ(Θ) and the probability density
ρ are uniquely determined. Moreover, he proves that the value of
s(ρ) is a strict maximum, with respect to smooth variations of ρ
satisfying the two above stated constraints. That maximum is a
function S of the variable Θ given by

S(Θ) = Ψ(Θ) +
〈
Θ,Q(Θ)

〉
.

The second differential D2Ψ of the function Ψ : G → R is a
positive symmetric bilinear form, which moreover is definite except
when J takes its value in an affine subspace of G∗.
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6. Souriau thermodynamics on Lie groups
6.4. Generalization for a Hamiltonian Lie group action (5)
When (M, ω) is the manifold of motions of a mechanical system,
Θ is interpreted as a G-valued generalized temperature and S(ρ) as
the entropy function of the Gibbs state ρ.

There is however an important difference between a
thermodynamic equilibrium state and a Gibbs state of a Lie group
G : a Gibbs state may not be invariant with respect to the action of
the Lie group G on the symplectic manifold of motions (M, ω),
since the expression of its probability density ρ involves the value
of the momentum map J, which is equivariant with respect to the
action Φ of G on (M, ω) and an affine action of G on the dual of
its Lie algebra G∗, whose linear part is the coadjoint action,
eventually with a symplectic cocycle of G .

Moreover, there are Hamiltonian actions for which the set of Gibbs
states is empty because the involved integrals never converge: this
happens, for example, for the action of the Galilean group on the
manifold of motions of an isolated classical mechanical system.
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6. Souriau thermodynamics on Lie groups

6.4. Generalization for a Hamiltonian Lie group action (6)
In [32], Souriau presents several example, both for classical and for
relativistic systems, which have clear physical interpretations. For
example he discusses both non-relativistic and relativistic
centrifuges for isotopic separation, and recovers the velocity
distribution of particles in a relativistic perfect gas which can be
found in the book by J.L. Synge [34].

In the second part of that paper, he presents a very nice
cosmological model of the Universe, founded on his ideas of
thermodynamics of Lie groups, compatible with the observed
isotropy of the 2.7 Kelvin degrees microwave background radiation.
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Appendix. The Euler-Poincaré equation

In a short Note [29] published in 1901, the great french
mathematician Henri Poincaré (1854–1912) proposed a new
formulation of the equations of Mechanics.

Assumptions
Let N be the configuration manifold of a conservative Lagrangian
system, with a smooth Lagrangian L : TN → R which does not
depend explicitly on time. Poincaré assumes that there exists an
homomorphism ψ of a finite-dimensional real Lie algebra G into
the Lie algebra A1(N) of smooth vector fields on N, such that for
each x ∈ N, the values at x of the vetor fields ψ(X ), when X
varies in G, completely fill the tangent space TxN. The action ψ is
then said to be locally transitive.
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Appendix. The Euler-Poincaré equation (2)

Of course these assumptions imply dimG  dim N

Under these assumptions, Henri Poincaré proved that the
equations of motion of the Lagrangian system could be written on
N × G or on N × G∗, where G∗ is the dual of the Lie algebra G,
instead of on the tangent bundle TN. When dimG = dim N (which
can occur only when the tangent bundle TN is trivial) the obtained
equation, called the Euler-Poincaré equation, is perfectly equivalent
to the Euler-Lagrange equations and may, in certain cases, be
easier to use.

But when dimG > dim N, the system made by the Euler-Poincaré
equation is underdetermined.
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Appendix. The Euler-Poincaré equation (3)
Let γ : [t0, t1]→ N be a smooth parametrized curve in N. Poincaré
proves that there exists a smooth curve V : [t0, t1]→ G in the Lie
algebra G such that, for each t ∈ [t0, t1],

ψ
(
V (t)

)(
γ(t)

)
=
dγ(t)

dt
. (∗)

When dimG > dim N the smooth curve V in G is not uniquely
determined by the smooth curve γ in N. However, instead of
writing the second-order Euler-Lagrange differential equations on
TN satisfied by γ when this curve is a possible motion of the
Lagrangian system, Poincaré derives a first order differential
equation for the curve V and proves that it is satisfied, together
with Equation (∗), if and only if γ is a possible motion of the
Lagrangian system.

Let ϕ : N × G → TN and L : N × G → R be the maps

ϕ(x ,X ) = ψ(X )(x) , L(x ,X ) = L ◦ ϕ(x ,X ) .
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Appendix. The Euler-Poincaré equation (4)

We denote by d1L : N × G → T ∗N and by d2L : N × G → G∗ the
partial differentials of L : N × G → R with respect to its first
variable x ∈ N and with respect to its second variable X ∈ G.

The map ϕ : N × G → TN is a surjective vector bundles morphism
of the trivial vector bundle N × G into the tangent bundle TN. Its
transpose ϕT : T ∗N → N × G∗ is therefore an injective vector
bundles morphism, which can be written

ϕT (ξ) =
(
πN(ξ), J(ξ)

)
,

where πN : T ∗N → N is the canonical projection of the cotangent
bundle and J : T ∗N → G∗ is a smooth map whose restriction to
each fibre T ∗xN of the cotangent bundle is linear, and is the
transpose of the map X 7→ ϕ(x ,X ) = ψ(X )(x). It can be seen
that J is in fact a Hamiltonian momentum map.
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Appendix. The Euler-Poincaré equation (5)

Let LL = dvertL : TN → T ∗N be the Legendre map.

Theorem (Euler-Poincaré equation)
With the above defined notations, let γ : [t0, t1]→ N be a smooth
parametrized curve in N and V : [t0, t1]→ G be a smooth
parametrized curve such that, for each t ∈ [t0, t1],

ψ
(
V (t)

)(
γ(t)

)
=
dγ(t)

dt
. (∗)

The curve γ is a possible motion of the Lagrangian system if and
only if V satisfies the equation(
d
dt
− ad∗V (t)

)(
J ◦LL ◦ϕ

(
γ(t),V (t)

))
− J ◦d1L

(
γ(t),V (t)

)
= 0 .

(∗∗)
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Appendix. The Euler-Poincaré equation (6)

Remark
Equation (∗) is called the compatibility condition and Equation
(∗∗) is the Euler-Poincaré equation. It can be written also as(
d
dt
− ad∗V (t)

)(
d2L

(
γ(t),V (t)

))
− J ◦ d1L

(
γ(t),V (t)

)
= 0 .

(∗∗∗)
Several examples of applications of the Euler-Poincaré equation
can be found in [23, 24].
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Appendix. The Euler-Poincaré equation (7)
When the function L : N × G → R does not depend on its first
variable x ∈ N, we have d1L = 0, and the Euler-Poincaré equation
becomes simpler: it an be written either as(

d
dt
− ad∗V (t)

)(
J ◦ LL ◦ ϕ

(
γ(t),V (t)

))
= 0 ,

or as (
d
dt
− ad∗V (t)

)(
d2L

(
γ(t),V (t)

))
= 0 .

The condition that L : N × G → R does not depend on its first
variable x ∈ N does not mean that the Lagrangian L : TN → R is
invariant by the canonical lift to TN of the action on N of the Lie
algebra G. When the Lagrangian L is hyper-regular, it does not
mean that the Hamiltonian HL associated to L is invariant par the
canonical lift to T ∗N of that action. On the contrary, when in
addition dimG = dim N, it means that the Hamiltonian HL can be
written as HL = HG∗ ◦ J, where HG∗ is a smooth function defined
on G∗, and the Euler-Poincaré equation can be identified whith a
Hamilton equation on G∗.Charles-Michel Marle, Université Pierre et Marie Curie Actions of Lie groups and Lie algebras on symplectic and Poisson manifolds. Application to Lagrangian and Hamiltonian systems 74/84
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The very nice recent book [14] by Y. Kosmann-Schwarzbach gives
an excellent historical and mathematical presentation of the
Noether theorems.
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[3] P. Bérest, Calcul des variations. Les cours de l’École
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Charles-Michel Marle, Université Pierre et Marie Curie Actions of Lie groups and Lie algebras on symplectic and Poisson manifolds. Application to Lagrangian and Hamiltonian systems 78/84



Bibliography IV
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