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Charles-Michel Marle, Université Pierre et Marie Curie The manifold of Motions and the total mass of a mechanical system 2/36



In memory of Jean-Marie Souriau
(1922–2012)
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Motions of a Lagrangian mechanical system

Around 1810-1811, while studying the slow variation of the six
orbital elements of a planet in the solar system (half major axis,
eccentricity, inclination, . . .) due to perturbatons of its Keplerian
motion by graviatational interactions with the other planets,
Joseph Louis Lagrange (1736–1813) introduced an important new
idea: he considered the set of all possible Keplerian (unperturbed)
motions of the planet; he proved that locally, this set has the
structure of a six-dimensional smooth manifold, on which the
orbital elements make a system of local coordinates.

Moreover, he proved that there exists on this manifold a natural
symplectic structure.

The slow variation of orbital elements of the planet due to its
gravitational interaction with other planets can then be described
by a smooth curve, parametrized by the time, drawn on the
manifold of unperturbed motions.
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Motions of a Lagrangian mechanical system (2)
Lagrange proved that this parametrized curve on the manifold of
Keplerian motions obeys a time-dependent differential equation.
He explicitely determined that differential equation and proved that
its form is that of a Hamilton’s equation, with a time-dependent
Hamiltonian. At that time the great Irish mathematician William
Rowan Hamilton (1805–1865) was five or six years old.

Lagrange introduced a composition law on the set of local
coordinates on the manifold of Keplerian motions, today called in
Mechanics the Lagrange parentheses (in modern mathematical
language Lagrange parentheses are the components of the natural
symplectic form). He generalized his results for all Lagrangian
mechanical systems.

At the same time, Siméon Denis Poisson (1781–1840) defined
another composition law more convenient than the Lagrange
parentheses because it can be applied to any pair of smooth
functions on the manifold of motions: the Poisson bracket, today
widely used in classical and quantum Mechanics.
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Motions of a Lagrangian mechanical system (3)

While studying the perturbations of Keplerian motions due to
gravitational interactions between the planets, Lagrange and
Poisson discovered an important property of the set of all possible
Keplerian (unperturbed) motions of a planet, and more generally,
of the set of all possible solutions of a Lagrangian (or Hamiltonian)
mechanical system: this set has a natural structure of symplectic
manifold. It is of this structure that I will speak.
During the years 1960–1970, Jean-Marie Souriau formalized
Lagrange’s results in modern mathematical language and gave
them a global formulation. He proved that under very general
assumptions, the set of all possible solutions of a classical
mechanical system, involving material points interacting by very
general forces, has a smooth manifold structure (not always
Hausdorff) and is endowed with a natural symplectic form. He
called it the manifold of motions of the mechanical system.
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The manifold of motion of a mechanical system

Souriau observed that the Lagrangian and Hamiltonian formalisms,
in their usual formulations, involve the choice of a particular
reference frame, in which the motion is described. This choice of a
particular reference frame destroys the natural symmetries of the
system. Examples:

If we use the Lagrangian formalism (Lagrange’s equations of
motion or Hamilton’s principle of least action), the Lagrangian of
the system depends on the reference frame: it is not invariant with
respect to Galilean transformations.

If we use the Hamiltonian formalism (Hamilton’s equations), the
Hamiltonian of the system depends on the reference frame: as the
Lagrangian, it is not invariant with respect to Galilean
transformation.

Souriau proposed a new approach, in which the symplectic
manifold of motions of the mechanical system conceptually plays
the central part.
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The manifold of motions of a mechanical system (2)

It may seem strange to consider the set of all possible motions of a
system, which is unknown as long as we have not determined all
these possible motions. One may ask if it is really useful when we
want to determine not all possible motions, but only one motion
with prescribed initial data, since that motion is just one point of
the (unknown) manifold of motion!

Souriau’s answers to this objection are the following.

1. We know that the manifold of motions has a symplectic
structure, and very often many things are known about its
symmetry properties.

2. In classical (non-relativistic) mechanics, there exists a natural
mathematical object which does not depend on the choice of a
particular reference frame (even if the decriptions given to that
object by different observers depend on the reference frame used
by these observers). Souriau calls it the evolution space of the
mechanical system.
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The evolution space of a mechanical system

The knowledge of the equations which govern the system’s
evolution allows the full mathematical description of the evolution
space, even when these equations are not yet solved.

Moreover, the symmetry properties of the evolution space are the
same as those of the manifold of motions.

The evolutuon space of a classical mechanical system is an
odd-dimensional presymplectic manifold. Its presymplectic form is
called the Lagrange form. At each point of the evolution space,
the Lagrange form’s kernel is 1-dimensional. The evolution space is
therefore endowed with a natural isotropic foliation in curves. Each
of these curves describes a possible motion of the system. The
manifold of motions is the set of these curves: it is the quotient
space of the evolution space by its isotropic foliation. Its dimension
is equal to the dimension of the evolution space minus 1. Of
course that dimension is even.
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Leibniz space-time of nonrelativistic Mechanics
In classical (non-relativistic) Mechanics, motions are described in
Leibniz space-time. It is an abstract 4-dimensional affine space L
whose elements are called events. Once units of time and of length
have been chosen, Leibniz space-time L is endowed with the
following structure:

1. There exists an affine submersion τ : L → T of Leibniz
space-time L onto an oriented one-dimensional affine Euclidean
space T . The space T is the absolute time, its orientation is
towards the future and τ is the date map. To each event z ∈ L it
associates the time τ(z) at which occured that event.

2. For each t ∈ T , the three-dimensional affine subspace
Et = τ−1(t) of L, called the space at time t, is endowed with an
Euclidean metric.

3. Any translation of L, when restricted to some
three-dimensional subspace Et1 (the space at time t1), is an
isometry of that Euclidean affine space onto another subspace Et2

(the space at time t2). Of course it may happen that t1 = t2.
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Leibniz space-time and reference frames
The abstract Galilean group is the group of orientation-preserving
affine isomorphisms of Leibniz space-time L which preserve its
structure, i.e. the Euclidean structure on the one-dimensional
space of absolute time T , its orientation towards the future and,
for each t ∈ T , the Euclidean structure on Et = τ−1(t), the space
at time t. Of course it is a subgroup of the group of all affine
isomorphisms of L.

In Leibniz space-time L there exists a set T of absolute times (it
can be identified with the set of all three-dimensional subspaces
Et ⊂ L, for all t ∈ T ) but there is no absolute space.

Observers, who do not have a direct access to Leibniz space-time
L, traditionally use reference frames. The reference frame of an
observer O is a smooth diffeomorphism

Ro : Eo × To → L

with the following properties.
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Leibniz space-time and reference frames (2)

1. Eo and To are oriented Euclidean vector spaces, respectively
three-dimensional and one-dimensional, called the observer’s space
and the observer’s time.

2. The map τ ◦ Ro : Eo × To → T , (x , t) 7→ τ ◦ Ro(x , t), does
not depend on x ∈ Eo , and yields an Euclidean affine orientation
preserving isometry t 7→ τ ◦ Ro(any x , t) of the time of the
observer, To , onto the absolute time, T .

3. For each fixed t ∈ To , the partial map x 7→ Ro(t, x) is an
Euclidean affine isometry of the observer’s space Eo onto the space
at some fixed time Eta , where ta = τ ◦ Ro(any x , t).

For simplifying things we will assume that an orientation has been
chosen on L which, together with the orientation of T towards the
future, determines an orientation on Et , the space at time t, for all
t ∈ T , and we will consider only reference frames Ro for which the
Euclidean isometries of Eo onto the spaces Et at time t, for various
t ∈ T , are positively oriented.
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Leibniz space-time and reference frames (3)
The Galilean group of an observer O whose space and time are,
respectively, Eo and To , is the group of affine maps of Eo ×To onto

itself which can be written as (
−→
x , t) 7→ (

−→
x ′, t ′), with{−→

x ′ = g(
−→
x ) + t

−→
u +

−→
w ,

t ′ = t + e ,

where g ∈ SO(Eo),
−→
u and

−→
w ∈ Eo and e ∈ To . The above

equations can be conveniently written in matrix form−→x ′t ′

1

 =

g
−→
u
−→
w

0 1 e
0 0 1

−→xt
1


The reference frame Ro : Eo × To → L is said to be inertial or
Galilean if, in addition to the conditions imposed to all reference
frames, Ro is an affine isomorphism.
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Leibniz space-time and reference frames (4)

A Galilean reference frame Ro determines a group isomorphism of
the Galilean group of the observer O onto the abstract Galilean
group, which associates to each element a in the Galilean group of
O the Galilean transformation of L

z 7→ Ro ◦ a ◦ R−1
o , z ∈ L .
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The evolution space of a system of material points
Let us consider a finite number n of material points with masses
mi , 1 ≤ i ≤ n. In the reference frame of some observer O, the
motion of this system is described by a map

t 7→ (
−→
x 1(t), . . . ,

−→
x n(t)) defined on some interval I ⊂ To of the

time of the observer, with values in Eno , the n-th power of the
space of the observer. The equations of motion are

d
−→
x i (t)

dt
=
−→
v i (t) ,

d
−→
v i (t)

dt
=
−→
F i

(
t,
−→
x (t),

−→
v (t)

)
,

1 ≤ i ≤ n .

The vector
−→
F i is the total force exerted on the i-th material point:

it includes the effect of an external force field, the forces exerted
by the other material points and, if the reference frame Ro is not
Galilean, centrifugal and Coriolis forces. It is assumed to be a
known function of the time, the positions and the velocities of the
material points seen in the reference frame of the observer O.

Charles-Michel Marle, Université Pierre et Marie Curie The manifold of Motions and the total mass of a mechanical system 15/36



The evolution space of a system of material points (2)
The evolution space of this system of material points, as seen by
the observer O, is the set V = To × Eno × Eno , whose elements are

(t,
−→
x 1, . . . ,

−→
x n,
−→
v 1, . . . ,

−→
v n).

The Lagrange form on V is the differential 2-form

σ =
n∑

i=1

(mid
−→
v i −

−→
F idt) ∧ (d

−→
x i −

−→
v idt) ,

where summation over the product of components with the same
index of the vector valued functions and differentials in an
orthonormal basis of Eo is tacitely assumed.

At each point of V the rank of ker σ is equal to 1, and the
equations of motion of the system written above simply mean that
the vector (

1,
d
−→
x 1

dt
, . . . ,

d
−→
x n

dt
,
d
−→
v 1

dt
,
d
−→
v n

dt

)
lies in ker σ.
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The evolution space of a system of material points (3)

Taking the image by the reference frame Ro (and its natural
prolongation to vectors and differential forms) of the evolution
space V and of the Lagrange form σ, we can define an intrinsic
evolution space Va endowed with an intrinsic Lagrange form σa.
Elements of the intrinsic evolution space are multiplets

(t, z1, . . . , zn,
−→
V 1,
−→
V n), where t ∈ T is an absolute time; for each i

(1 ≤ i ≤ n) zi ∈ Et is an element of the Leibniz space-time such

that τ(xi ) = t and
−→
V i is a 4-vector tangent to L at the point zi

whose projection on T (by the natural prolongation to vectors of
the date map τ) is equal to 1.

One can check that the intrinsic evolution space and its intrinsic
Lagrange form do not depend on the choice of the reference frame
in which it was expressed, even when that reference frame is not
Galilean.
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More general evolution spaces
The evolution space and the Lagrange form can be determined for
classical (non-relativistic) mechanical systems more general than
those made by a finite number of material points, for example
systems made by rigid bodies with ideal holonomic constraints,
Lagrangian systems and Hamiltonian systems.

For a Hamiltonian system on a smooth symplectic manifold (M, ω)
with a smooth (maybe time-dependent) Hamiltonian
H : M × R→ R, the evolution space is M × R and the Lagrange
form is the Poincaré-Cartan 2-form

σ = ω − dH ∧ dt .

For a Lagrangian system with a smooth regular Lagrangian
L : TN × R→ R, the evolution space is TN × R and the Lagrange
form is

σ =
n∑

i=1

d

(
∂L(x , v , t)

∂v i

)
∧dx i−d

(
n∑

i=1

v i ∂L(x , v , t)

∂v i
− L(x , v , t)

)
∧dt .
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Closedness of the Lagrange form

We see that in the two above given examples (Hamiltonian
systems and Lagrangian systems) the Lagrange form σ is closed,
i.e. it satisfies dσ = 0.

For a system made of a finite number n of material points,
imposing to the Lagrange form to be closed restricts the the

generality of the functions which express the total forces
−→
F i

(1 ≤ i ≤ n) exerted on the particles. However, σ is closed in many
examples: electrically charged particles in an external
electromagnetic field, gravitationally interacting material points,
systems with ideal holonomic constraints, . . . Souriau states the
closedness of the Lagrange form σ as a fundamental principle of
Mechanics; he calls it the Maxwell Principle.

The Maxwell Principle has an important consequence: the
Lagrange form σ is a presemplectic form which projects on the
quotient of the evolution space by its isotropic foliation, i.e. on the
manifold of motions. This projected form is a symplectic form.
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Symmetries of an isolated system
In classical (non-relativistic and non-quantum) Analytical
Mechanics, an isolated mechanical system is made by a (maybe
infinite) number of material points which evolve in the Leibniz
space-time L, interacting between them by instantaneous
interactions. Let us consider, for example, the motion of a rigid
body. It is assumed that the constraint forces between its different
points ensure its perfect rigidity during its motion; they
instantaneously take the values which ensure that rigidity.
Moreover, the system being isolated, there is no external field of
forces which could break the natural symmetries of the Leibniz
space-time L, since the forces exerted on a material point of the
system all are created by other material points of that system.

Therefore, the symmetries of the Leibniz space-time L all are too
symmetries of any isolated mechanical system evolving in L.

In other words, the group of symmetries of an isolated mechanical
system contains the abstract Galilean group of symmetries of the
Leibniz space-time L.

Charles-Michel Marle, Université Pierre et Marie Curie The manifold of Motions and the total mass of a mechanical system 20/36



Momentum maps

For an observer O whose reference frame Ro is Galilean, the group
of symmetries of the evolution space V of an isolated mechanical
system, as it is seen in the reference frame Ro , contains the
Galilean group of the observer.

Therefore the Galilean group Go of the observer acts on the
presymplectic manifold (V, σ), the Lagrange form σ remaining
invariant under that action. In many examples, that action is
Hamiltonian: it means that there exists a momentum map
J : V → G∗o , defined on the evolution space V, taking its values in
the dual space G∗o of the Lie algebra Go of the Galilean group Go ,
which yields a Hamiltonian JX

v 7→ JX (v) =
〈
J(v),X

〉
, v ∈ V , X ∈ Go ,

for the infinitesimal action on V of each infinitesimal symmetry
X ∈ Go
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Emmy Noether’s theorem and equivariance of the
momentum map

The Hamiltonian form of a theorem due to Emmy Noether states
that the momentum map J : V → G∗o keeps a constant value on
each leaf of the isotropic foliation of the evolution space (V, σ). In
other words, each component of J in a basis of G∗o is a first integral
of the equations of motion of the system.

Moreover, let us denote by Φ : Go × V → V the action of the
Galilean group Go on the evolution space V. There exists a unique
affine action a : Go × G∗o → G∗o of the Galilean group Go on the
dual space G∗o of its LIe algebra for which the momentum map J is
equivariant, i.e. such that, for each v ∈ V and g ∈ Go ,

J
(
Φ(g , v)

)
= a
(
g , J(v)

)
.
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Symplectic cocycles
The affine action a is expressed as

a(g , ζ) = Ad∗g−1(ζ) + θ(g) , g ∈ Go , ζ ∈ G∗o ,

where (g , ζ) 7→ Ad∗g−1(ζ) is the coadjoint action of the Galilean
group Go on the dual of its Lie algebra. We see that the linear part
of the affine action a is the coadjoint action. The map θ : Go → G∗o
is a symplectic cocycle of Go for the coadjoint representation.

The momentum map J : V → G∗o is determined only up to addition
of an arbitrary constant element in G∗o . When the momentum map
J is replaced by J ′ = J + µ (where µ ∈ G∗o is a constant), the
cocycle θ is replaced by

θ′(g) = θ(g) +
(
µ−Ad∗g−1(µ)

)
.

We see that the additional term g 7→ µ−Ad∗g µ is a symplectic
coboundary of the Galilean group Go for the coadjoint action.
Therefore the symplectic cohomology class of θ′ is the same as
that of θ, denoted by [θ]: it is an invariant of the action Φ.
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Action of the Galilean group on the manifold of motions

Since the action of any element of Go on the evolution space V
maps each isotropic leaf (i.e each motion of the system) onto
another isotropic leaf (i.e. onto another motion), the Galilean
group acts on the manifold of motions (M, σ) of the system.

When the action of Go on V is Hamiltonian, its action on the
symplectic manifold of motions (M, σ) too is Hamiltonian, and the
symplectic cohomology class [θ] of that action remains the same:
it is an invariant of the action of the Galilean group on the
symplectic manifold of motions of the system.

We have seen that the components of the momentum map
J : V → G∗o are first integrals of the equations of motion. In many
examples they have a clear physical meaning. The symplectic
cohomology class [θ] of the action too has a physical meaning: as
shown by Souriau, it can be interpreted as the total mass of the
system.
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Symplectic cocycles of the Galilean group
V. Bargmann (Ann. Math. 59, 1954, pp 1–46) has proven that the
symplectic cohomology space of the Galilean group is
one-dimensional. Let us describe this space for the Galilean group
Go of the observer O (isomorphic to the abstract Galilean group
which acts on Leibniz space-time L). An element of Go is a matrix

a =

g
−→
u
−→
w

0 1 e
0 0 1


where g ∈ SO(Eo),

−→
u and

−→
w ∈ Eo and e ∈ To . An element of its

Lie algebra is a matrix

X =

−→ω −→
β
−→
γ

0 0 ε
0 0 0


where

−→
ω ∈ so(Eo),

−→
β and

−→
γ ∈ Eo and ε ∈ To .
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Symplectic cocycles of the Galilean group (2)
Since the Euclidean vector space Eo is three-dimensional and
oriented, the Lie algebra so(Eo) is identified with Eo , an element
−→
ω ∈ so(E) being identified with the vector

−→
ω ∈ Eo , acting on Eo

by the vector product
−→
ω :
−→
x 7→

−→
ω ×

−→
x
−→
x ∈ Eo .

The Lie algebra Go can therefore be identified with
Eo × Eo × Eo × To , the element X ∈ Go being identified with the
column vector

X =
(−→
ω
−→
β
−→
γ ε

)T
.

Using the scalar product in Eo and the product of line matrices with
vector matrices as duality coupling, the dual space G∗o of the Lie
algebra Go is identified with the space of line vectors of the form(−→

I
−→
J
−→
K E

)
with

−→
I ,
−→
J and

−→
K ∈ Eo and E ∈ To .
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Symplectic cocycles of the Galilean group (3)

With the above stated identification, all symplectic cocycles of the
Galilean group are cohomologous to the cocycle

θm = mθ1

where m ∈ R is a real constant, and

θ1(a) =
(−→

u ×
−→
w
−→
w − e

−→
u −

−→
u 1

2‖
−→
u ‖2

)
.

I recall that

a =

g
−→
u
−→
w

0 1 e
0 0 1

 .
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Example: the n body problem
We consider n material points which interact by gravitational
attraction. The evolution space V of the system, as seen by the
observer O, is the set of all

(
−→
x 1, . . . ,

−→
x n,
−→
v 1, . . . ,

−→
v n, t) ∈ Eo2n×To with

−→
x i 6=

−→
x j if i 6= j .

The gravitational forces are described by a potential energy

U(
−→
x 1, . . . ,

−→
x n) which only depends on the mutual distances

‖
−→
x i −

−→
x j‖ between all pairs of the n material points. The

momentum map J : V → G∗o is

J(
−→
x ,
−→
v , t) =

(
A B C D

)
,

with

A =
n∑

i=1

mi
−→
x i ×

−→
v i B = −

n∑
i=1

mi (
−→
x i − t

−→
v i )

C =
n∑

i=1

mi
−→
v i D = −

(
1

2

n∑
i=1

mi‖
−→
v i‖2 + U(

−→
x )

)
.

Charles-Michel Marle, Université Pierre et Marie Curie The manifold of Motions and the total mass of a mechanical system 28/36



Example: the n body problem (2)
We see that A is the total angular momentum with respect to the
origin, C the total linear momentum and D the opposite of the
total energy (kinetic plus potential) of the system. When
n∑

i=1

mi 6= 0, we can write

B
n∑

i=1

mi

= −
−→
x G + t

C
n∑

i=1

mi

, with
−→
x G =

n∑
i=1

mi
−→
x i

n∑
i=1

mi

.

B = Constant means that
−→
x G is an affine function of time: the

center of mass moves on a straight line at a constant velocity. The
cocycle for which the momentum map is equivariant is

θ =

(
n∑

i=1

mi

)
θ1 .
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Other applications in classical Mechanics

More generally, for classical isolated conservative mechanical
systems made of material points and rigid bodies which may
interact by perfect holonomic constraints, one can prove that the
symplectic cocycle for which the momentum map is equivariant is
mθ1, m being the total mass of the system. Of course for usual
mechanical systems m > 0, but it is possible to consider the
manifold of motions of systems with m = 0 or even with m < 0.

The subset of elements of the Galilean group Go which are
expressed as idEo

−→
u
−→
w

0 1 0
0 0 1


is an Abelian six-dimensional normal subgroup G̃o of Go isomorphic
to Eo × Eo . The quotient group Go/G̃o is isomorphic to
SO(Eo)× To .
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Other applications in classical Mechanics (2)

The manifold of motions of of an isolated classical mechanical
system of total mass m 6= 0 can be split into a product
M = M1 ×M2. The factor M1, isomorphic to a six-dimensional
vector space, is the manifold of motions of the center of mass, and
the factor M2 the manifold of motions around the center of mass
(in which the center of mass remains at rest at the origin of the
space Eo). The Galilean group acts separately on M1 and on M2,
its action on M2 occuring through its projection onto the quotient
group Go/G̃o ≡ SO(Eo)× To . This property is called the
barycentric decomposition.
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Relativistic Mechanics
In Special Relativity, the Leibniz space-time L is no longer the
frame in which is described the motion of material bodies. It is
replaced by the Minkowski space-time M, whose symmetry group
is the Poincaré group. What should be considered as the evolution
space of a system in Special Relativity is a difficult question, even
when the system contains only a finite number of interacting point
particles, because their interactions occur by means of fields
created by the particles themselves, which propagate at a finite
velocity and carry away a part of the particle’s energy.

However, it seems natural to state as a postulate that the manifold
of motions of an isolated system in Special Relativity is a
symplectic manifold on which the Poincaré group acts by a
symplectic action. Since the Lie algebra of the Poincaré group is
equal to its derived ideal, a symplectic action is automatically
Hamiltonian. So there always exists a momentum map defined on
the manifold of motions with values in the dual of the Lie algebra
of the Poincaré group.
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Relativistic Mechanics (2)

Contrary to that of the Galilean group, the symplectic cohomology
of the Poincaré group is trivial. Therefore the momentum map can
always be chosen to be equivariant with respect to the coadjoint
action of the Poincaré group on the dual of its Lie algebra. There
is no more a cocycle corresponding to the total mass of the system.
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Elementary mechanical systems

An elementary system is a system such that when it is isolated, the
symmetry group of space-time (the Galilean group if the system is
considered in classical mechanics, or the Poincaré group if it is
considered in Special Relativity) acts transitively on its manifold of
motions. The manifold of motions is therefore a symplectic
homogeneous space of the symmetry group. The symplectic
homogeneous spaces of the Poincaré group are the coadjoint
orbits. Their classification has many features of the classification
of elementary particles, by their mass and spin.

For the Galilean group things are slightly more complicated
because one must account for the cocycle: homogeneous
symplectic spaces are orbits of an affine action of the Galilean
group on the dual of its Lie algebra, and the symplectic form on
these orbits has an additional term involving that cocycle.
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Thanks

Many thanks to Gabriel Catren and to all
the members of the organizing committee
for inviting me to present a talk at this
workshop.

And thanks to all the persons who
patiently listened to my talk!
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The reader will find below the references to the works of Lagrange
and Poisson discussed in my talk, and to the book and paper of
Jean-Marie Souriau which contain almost all the matters I have
presented.

He will find more about the works of Poisson in the recent book
“Siméon-Denis Poisson, les mathématiques au service de la
science” and a very thorough discussion of the Noether theorems
in the beautiful book “The Noether theorems” by
Y. Kosmann-Schwarzbach.
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les mathématiques au service de la science, Éditions de l’École
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planètes. Mémoire de l’Académie Royale des Sciences de
Paris, année 1774. Dans Œuvres de Lagrange, volume VI,
Gauthier-Villars, Paris, 1877, pages 636–709.
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Numdam, http://www.numdam.org.
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